論文の概要: Efficient Machine Learning, Compilers, and Optimizations for Embedded
Systems
- arxiv url: http://arxiv.org/abs/2206.03326v1
- Date: Mon, 6 Jun 2022 02:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 16:55:33.146308
- Title: Efficient Machine Learning, Compilers, and Optimizations for Embedded
Systems
- Title(参考訳): 組み込みシステムの効率的な機械学習・コンパイラ・最適化
- Authors: Xiaofan Zhang, Yao Chen, Cong Hao, Sitao Huang, Yuhong Li, Deming Chen
- Abstract要約: Deep Neural Networks(DNN)は、高品質なコンピュータビジョン、自然言語処理、仮想現実アプリケーションを提供することによって、膨大な数の人工知能(AI)アプリケーションで大きな成功を収めている。
これらの新興AIアプリケーションは、計算とメモリ要求の増大も伴うため、特に限られた/メモリリソース、厳格な電力予算、小さなフォームファクタが要求される組み込みシステムでは、処理が困難である。
本章では,効率的なアルゴリズム,コンパイラ,組込みシステムに対するさまざまな最適化を実現するための,効率的な設計手法を紹介する。
- 参考スコア(独自算出の注目度): 21.098443474303462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Neural Networks (DNNs) have achieved great success in a massive number
of artificial intelligence (AI) applications by delivering high-quality
computer vision, natural language processing, and virtual reality applications.
However, these emerging AI applications also come with increasing computation
and memory demands, which are challenging to handle especially for the embedded
systems where limited computation/memory resources, tight power budgets, and
small form factors are demanded. Challenges also come from the diverse
application-specific requirements, including real-time responses,
high-throughput performance, and reliable inference accuracy. To address these
challenges, we will introduce a series of effective design methods in this book
chapter to enable efficient algorithms, compilers, and various optimizations
for embedded systems.
- Abstract(参考訳): Deep Neural Networks(DNN)は、高品質なコンピュータビジョン、自然言語処理、仮想現実アプリケーションを提供することによって、膨大な数の人工知能(AI)アプリケーションで大きな成功を収めている。
しかし、これらの新興AIアプリケーションは、計算とメモリ要求の増加も伴うため、特に計算/メモリリソースの制限、電力予算の厳格化、小さなフォームファクターが要求される組み込みシステムでは、処理が困難である。
リアルタイム応答、高スループットのパフォーマンス、信頼性の高い推測精度など、さまざまなアプリケーション固有の要件も課題だ。
これらの課題に対処するため,本章では,効率的なアルゴリズム,コンパイラ,組込みシステムに対する様々な最適化を実現するための,効率的な設計手法のシリーズを紹介する。
関連論文リスト
- Efficient Deep Learning Infrastructures for Embedded Computing Systems: A Comprehensive Survey and Future Envision [10.533474972061851]
近年、ディープニューラルネットワーク(DNN)は、さまざまな現実世界のビジョンと言語処理タスクにおいて、目覚ましい成功を収めている。
これまでのよく確立されたDNNは、優れた精度を維持することができるにもかかわらず、より深く、より広いものへと進化してきた。
この調査は、組み込みコンピューティングシステムのための最近の効率的なディープラーニングインフラについて議論することに焦点を当てる。
論文 参考訳(メタデータ) (2024-11-03T03:55:04Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
ディープニューラルネットワーク(DNN)は人工知能(AI)分野において前例のない成功を収めた
しかし、それらの優れた性能は、計算の複雑さのかなりのコストを伴っている。
本稿では,効率的なディープラーニング手法,システム,応用について概説する。
論文 参考訳(メタデータ) (2022-04-25T16:52:48Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
ディープニューラルネットワーク(DNN)は、オブジェクトや音声認識など、さまざまな人工知能(AI)推論タスクにおいて大きな進歩をもたらした。
このようなAIモデルをコモディティデバイスにデプロイすることは、大きな課題に直面している。
クロススタック手法によりリアルタイムな性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2021-06-21T11:23:12Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Hard-ODT: Hardware-Friendly Online Decision Tree Learning Algorithm and
System [17.55491405857204]
ビッグデータの時代、従来の決定木誘導アルゴリズムは大規模なデータセットの学習には適していません。
最先端のオンライン学習モデルの1つであるHoeffdingツリーの誘導を改善するための新しい量子化ベースのアルゴリズムを紹介します。
本稿では,フィールドプログラマブルゲートアレイ(FPGA)上に,システムレベルの最適化手法を用いた高性能,ハードウェア効率,スケーラブルなオンライン決定木学習システムであるHard-ODTを提案する。
論文 参考訳(メタデータ) (2020-12-11T12:06:44Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。