On the KL-Divergence-based Robust Satisficing Model
- URL: http://arxiv.org/abs/2408.09157v1
- Date: Sat, 17 Aug 2024 10:05:05 GMT
- Title: On the KL-Divergence-based Robust Satisficing Model
- Authors: Haojie Yan, Minglong Zhou, Jiayi Guo,
- Abstract summary: robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
- Score: 2.425685918104288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical risk minimization, a cornerstone in machine learning, is often hindered by the Optimizer's Curse stemming from discrepancies between the empirical and true data-generating distributions.To address this challenge, the robust satisficing framework has emerged recently to mitigate ambiguity in the true distribution. Distinguished by its interpretable hyperparameter and enhanced performance guarantees, this approach has attracted increasing attention from academia. However, its applicability in tackling general machine learning problems, notably deep neural networks, remains largely unexplored due to the computational challenges in solving this model efficiently across general loss functions. In this study, we delve into the Kullback Leibler divergence based robust satisficing model under a general loss function, presenting analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures. Through extensive numerical experiments across three distinct machine learning tasks, we demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Understanding Generalization of Federated Learning via Stability:
Heterogeneity Matters [1.4502611532302039]
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
arXiv Detail & Related papers (2023-06-06T16:12:35Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Robust Unsupervised Learning via L-Statistic Minimization [38.49191945141759]
We present a general approach to this problem focusing on unsupervised learning.
The key assumption is that the perturbing distribution is characterized by larger losses relative to a given class of admissible models.
We prove uniform convergence bounds with respect to the proposed criterion for several popular models in unsupervised learning.
arXiv Detail & Related papers (2020-12-14T10:36:06Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
We consider a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate.
We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear encoder.
We provide a robustness certificate for end-to-end classification.
arXiv Detail & Related papers (2020-10-22T22:05:21Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.