Minimising statistical errors in calibration of quantum-gate sets
- URL: http://arxiv.org/abs/2206.03417v2
- Date: Fri, 21 Jul 2023 10:40:45 GMT
- Title: Minimising statistical errors in calibration of quantum-gate sets
- Authors: Yaiza Aragon\'es-Soria, Ren\'e Otten, Tobias Hangleiter, Pascal
Cerfontaine, David Gross
- Abstract summary: A protocol called Gate Set protocol (GSC) has been introduced and used to learn coherent errors from multi-qubit quantum gates.
We numerically demonstrate that, just by adding two more single-qubit gates to GSC, the statistical error produced in the calibration of a CNOT gate is divided by a factor of more than two.
- Score: 1.3649494534428743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Calibration of quantum gates is a necessary hurdle to overcome on the way to
a reliable quantum computer. In a recent paper, a protocol called Gate Set
Calibration protocol (GSC) has been introduced and used to learn coherent
errors from multi-qubit quantum gates. Here, we extend this study in a number
of ways: First, we perform a statistical analysis of the measurement
uncertainties. Second, we find explicit measurement settings that minimize this
uncertainty, while also requiring that the protocol involves only a small
number of distinct gates, aiding physical realizability. We numerically
demonstrate that, just by adding two more single-qubit gates to GSC, the
statistical error produced in the calibration of a CNOT gate is divided by a
factor of more than two.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
benchmarking hardware errors in quantum computers has drawn significant attention lately.
Existing benchmarks for digital quantum computers involve averaging the global fidelity over a large set of quantum circuits.
We develop a new figure-of-merit suitable for multi-qubit quantum gates based on the reduced Choi matrix.
arXiv Detail & Related papers (2022-10-09T19:36:21Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Error metric for non-trace-preserving quantum operations [3.6492255655113395]
We study the problem of measuring errors in non-trace-preserving quantum operations.
We propose an error metric that efficiently provides an upper bound on the trace distance between the normalized output states.
arXiv Detail & Related papers (2021-10-05T18:54:14Z) - Measurement-Free Ultrafast Quantum Error Correction by Using
Multi-Controlled Gates in Higher-Dimensional State Space [0.5937476291232802]
We propose a new approach to real-time error correction that is free from measurement and realized by using multi-controlled gates.
We provide a series of novel decompositions of a Toffoli gate by using the lowest three energy levels of a transmon.
It would substantially shorten the time required for error correction and resetting ancilla qubits.
arXiv Detail & Related papers (2021-08-31T21:44:14Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Beyond single-shot fault-tolerant quantum error correction [0.7734726150561088]
We show that fault-tolerant quantum error correction can be achieved using $O(d log(d))$ measurements for any code.
We prove the existence of a sub-single-shot fault-tolerant quantum error correction scheme using fewer than r measurements.
arXiv Detail & Related papers (2020-02-12T19:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.