Measurement-Free Ultrafast Quantum Error Correction by Using
Multi-Controlled Gates in Higher-Dimensional State Space
- URL: http://arxiv.org/abs/2109.00086v2
- Date: Mon, 6 Sep 2021 11:27:15 GMT
- Title: Measurement-Free Ultrafast Quantum Error Correction by Using
Multi-Controlled Gates in Higher-Dimensional State Space
- Authors: Toshiaki Inada, Wonho Jang, Yutaro Iiyama, Koji Terashi, Ryu Sawada,
Junichi Tanaka, Shoji Asai
- Abstract summary: We propose a new approach to real-time error correction that is free from measurement and realized by using multi-controlled gates.
We provide a series of novel decompositions of a Toffoli gate by using the lowest three energy levels of a transmon.
It would substantially shorten the time required for error correction and resetting ancilla qubits.
- Score: 0.5937476291232802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is a crucial step beyond the current
noisy-intermediate-scale quantum device towards fault-tolerant quantum
computing. However, most of the error corrections ever demonstrated rely on
post-selection of events or post-correction of states, based on measurement
results repeatedly recorded during circuit execution. On the other hand,
real-time error correction is supposed to be performed through classical
feedforward of the measurement results to data qubits. It provides unavoidable
latency from conditional electronics that would limit the scalability of the
next-generation quantum processors. Here we propose a new approach to real-time
error correction that is free from measurement and realized by using
multi-controlled gates based on higher-dimensional state space. Specifically,
we provide a series of novel decompositions of a Toffoli gate by using the
lowest three energy levels of a transmon that significantly reduce the number
of two-qubit gates and discuss their essential features, such as extendability
to an arbitrary number of control qubits, the necessity of exclusively
controlled NOT gates, and usefulness of their incomplete variants. Combined
with the recently demonstrated schemes of fast two-qubit gates and
all-microwave qubit reset, it would substantially shorten the time required for
error correction and resetting ancilla qubits compared to a measurement-based
approach and provide an error correction rate of $\gtrsim1$~MHz with high
accuracy for three-qubit bit- and phase-flip errors.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Hamiltonian Phase Error in Resonantly Driven CNOT Gate Above the
Fault-Tolerant Threshold [0.0]
electron spin qubits are a promising platform for scalable quantum processors.
A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates.
We demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor.
arXiv Detail & Related papers (2023-07-18T07:44:00Z) - Quantum error correction with silicon spin qubits [0.0]
Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information.
Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems.
Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits.
arXiv Detail & Related papers (2022-01-21T07:59:49Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Experimental demonstration of continuous quantum error correction [0.0]
We implement a continuous quantum bit-flip correction code in a multi-qubit architecture.
We achieve an average bit-flip detection efficiency of up to 91%.
Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture.
arXiv Detail & Related papers (2021-07-23T18:00:55Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Fault-tolerant qubit from a constant number of components [1.0499611180329804]
Gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation.
We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components.
arXiv Detail & Related papers (2020-11-16T19:01:03Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.