Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach
- URL: http://arxiv.org/abs/2206.03451v1
- Date: Tue, 7 Jun 2022 17:10:58 GMT
- Title: Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach
- Authors: Sindre Stenen Blakseth, Adil Rasheed, Trond Kvamsdal, Omer San
- Abstract summary: Digital twins, autonomous, and artificial intelligent systems require accurate, interpretable, computationally efficient, and generalizable models.
We show how a hybrid approach combining the best of physics-based modeling and data-driven modeling can result in models which can outperform them both.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Upcoming technologies like digital twins, autonomous, and artificial
intelligent systems involving safety-critical applications require models which
are accurate, interpretable, computationally efficient, and generalizable.
Unfortunately, the two most commonly used modeling approaches, physics-based
modeling (PBM) and data-driven modeling (DDM) fail to satisfy all these
requirements. In the current work, we demonstrate how a hybrid approach
combining the best of PBM and DDM can result in models which can outperform
them both. We do so by combining partial differential equations based on first
principles describing partially known physics with a black box DDM, in this
case, a deep neural network model compensating for the unknown physics. First,
we present a mathematical argument for why this approach should work and then
apply the hybrid approach to model two dimensional heat diffusion problem with
an unknown source term. The result demonstrates the method's superior
performance in terms of accuracy, and generalizability. Additionally, it is
shown how the DDM part can be interpreted within the hybrid framework to make
the overall approach reliable.
Related papers
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
We propose a novel architecture for generating model-integrated neural networks (MINN)
MINN allows integration on the level of learning physics-based dynamics of the system.
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Controllable and Compositional Generation with Latent-Space Energy-Based
Models [60.87740144816278]
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications.
In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes.
By composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.
arXiv Detail & Related papers (2021-10-21T03:31:45Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
We show that the hybrid modeling process is more comfortable, needs less system knowledge and is less error-prone compared to modeling solely based on first principle.
The resulting hybrid model has improved in computation performance, compared to a pure first principle white-box model.
The considered use-case can serve as example for other modeling and simulation applications in and beyond the medical domain.
arXiv Detail & Related papers (2021-09-10T13:48:43Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
Hybrid Analysis and Modeling (HAM) is an emerging modeling paradigm which aims to combine physics-based modeling and data-driven modeling.
We introduce, justify and demonstrate a novel approach to HAM -- the Corrective Source Term Approach (CoSTA)
arXiv Detail & Related papers (2021-05-24T20:17:13Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.