論文の概要: Neural Network Compression via Effective Filter Analysis and
Hierarchical Pruning
- arxiv url: http://arxiv.org/abs/2206.03596v1
- Date: Tue, 7 Jun 2022 21:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-10 04:55:47.341643
- Title: Neural Network Compression via Effective Filter Analysis and
Hierarchical Pruning
- Title(参考訳): 実効的フィルタ解析と階層的プルーニングによるニューラルネットワーク圧縮
- Authors: Ziqi Zhou, Li Lian, Yilong Yin, Ze Wang
- Abstract要約: 現在のネットワーク圧縮法には、最大圧縮率を推定する理論的な枠組みが欠如している。
本研究では,ネットワークの最大冗長性を推定するための勾配行列特異点解析に基づく手法を提案する。
この最大速度で導かれ,ネットワーク性能を犠牲にすることなく,ニューロンネットワーク構造を最大化するために,新規で効率的な階層型ネットワークプルーニングアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 41.19516938181544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network compression is crucial to making the deep networks to be more
efficient, faster, and generalizable to low-end hardware. Current network
compression methods have two open problems: first, there lacks a theoretical
framework to estimate the maximum compression rate; second, some layers may get
over-prunned, resulting in significant network performance drop. To solve these
two problems, this study propose a gradient-matrix singularity analysis-based
method to estimate the maximum network redundancy. Guided by that maximum rate,
a novel and efficient hierarchical network pruning algorithm is developed to
maximally condense the neuronal network structure without sacrificing network
performance. Substantial experiments are performed to demonstrate the efficacy
of the new method for pruning several advanced convolutional neural network
(CNN) architectures. Compared to existing pruning methods, the proposed pruning
algorithm achieved state-of-the-art performance. At the same or similar
compression ratio, the new method provided the highest network prediction
accuracy as compared to other methods.
- Abstract(参考訳): ネットワーク圧縮は、ディープネットワークをより効率的で、高速で、ローエンドのハードウェアに一般化させるのに不可欠である。
第一に、最大圧縮率を推定するための理論的枠組みが欠けていること、第二に、いくつかの層がオーバープルーンされ、ネットワーク性能が大幅に低下する可能性があることである。
この2つの問題を解決するために,ネットワークの最大冗長性を推定する勾配行列特異点解析法を提案する。
ネットワーク性能を犠牲にすることなく、ニューロンネットワーク構造を最大に凝縮する新規で効率的な階層的ネットワークプラニングアルゴリズムを開発した。
cnn(advanced convolutional neural network)アーキテクチャをprunする新しい手法の有効性を実証するために、実質的な実験を行った。
既存プルーニング法と比較して,提案プルーニングアルゴリズムは最先端の性能を達成した。
同じまたは類似の圧縮比で、新しい方法は、他の方法と比較して、最も高いネットワーク予測精度を提供した。
関連論文リスト
- Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Neural Network Compression by Joint Sparsity Promotion and Redundancy
Reduction [4.9613162734482215]
本稿では,冗長なフィルタを創出し,空間性向上によるネットワーク学習に対する効果を最小化する,複合制約に基づく新しい学習手法を提案する。
いくつかのピクセルワイドセグメンテーションベンチマークによるテストでは、テストフェーズにおけるネットワークのニューロン数とメモリフットプリントが、性能に影響を与えずに大幅に減少することが示された。
論文 参考訳(メタデータ) (2022-10-14T01:34:49Z) - i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery [11.119895959906085]
ニューラルネットワークのための新しい構造化プルーニングアルゴリズム - i-SpaSPと呼ばれる反復型スパース構造化プルーニングを提案する。
i-SpaSPはネットワーク内の重要なパラメータ群を識別することで動作し、プルーニングされたネットワーク出力と高密度なネットワーク出力の残差に最も寄与する。
高い性能のサブネットワークを発見し, 証明可能なベースライン手法のプルーニング効率を, 数桁の精度で向上させることが示されている。
論文 参考訳(メタデータ) (2021-12-07T05:26:45Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - Convolutional Neural Network Pruning with Structural Redundancy
Reduction [11.381864384054824]
構造的冗長性は重要でないフィルタを見つけるよりも重要な役割を担っていると我々は主張する。
本研究では,CNNの構造冗長性を同定し,選択層内のプルーンフィルタを最も冗長性の高いネットワークプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-04-08T00:16:24Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
ビット幅が徐々に増大する混合精度量子化ニューラルネットワークを提案し,精度と圧縮のトレードオフを改善する。
典型的なネットワークアーキテクチャとベンチマークデータセットの実験は、提案手法がより良い結果または同等の結果が得られることを示した。
論文 参考訳(メタデータ) (2019-12-29T14:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。