Solving the Spike Feature Information Vanishing Problem in Spiking Deep
Q Network with Potential Based Normalization
- URL: http://arxiv.org/abs/2206.03654v1
- Date: Wed, 8 Jun 2022 02:45:18 GMT
- Title: Solving the Spike Feature Information Vanishing Problem in Spiking Deep
Q Network with Potential Based Normalization
- Authors: Yinqian Sun, Yi Zeng and Yang Li
- Abstract summary: We propose a potential based layer normalization(pbLN) method to directly train spiking deep Q networks.
Experiment shows that compared with state-of-art ANN-SNN conversion method and other SDQN works, the proposed pbLN spiking deep Q networks (PL-SDQN) achieved better performance on Atari game tasks.
- Score: 7.796499799525251
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain inspired spiking neural networks (SNNs) have been successfully applied
to many pattern recognition domains. The SNNs based deep structure have
achieved considerable results in perceptual tasks, such as image
classification, target detection. However, the application of deep SNNs in
reinforcement learning (RL) tasks is still a problem to be explored. Although
there have been previous studies on the combination of SNNs and RL, most of
them focus on robotic control problems with shallow networks or using ANN-SNN
conversion method to implement spiking deep Q Network (SDQN). In this work, we
mathematically analyzed the problem of the disappearance of spiking signal
features in SDQN and proposed a potential based layer normalization(pbLN)
method to directly train spiking deep Q networks. Experiment shows that
compared with state-of-art ANN-SNN conversion method and other SDQN works, the
proposed pbLN spiking deep Q networks (PL-SDQN) achieved better performance on
Atari game tasks.
Related papers
- Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Gradient Scaling on Deep Spiking Neural Networks with Spike-Dependent
Local Information [2.111711135667053]
We train deep neural networks (SNNs) with spiking backpropagation (STBP) with surrogate gradient.
In this work, we proposed gradient with scaling local spike information, which is the relation between pre- and post-temporal spikes.
Considering the causality between spikes, we could enhance the training of deep SNNs.
arXiv Detail & Related papers (2023-08-01T13:58:21Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
Spiking Neural Networks (SNNs) have attracted the attention of the deep learning community for use in low-latency, low-power neuromorphic hardware.
In this paper, we introduce Spiking Phasor Neural Networks (SPNNs)
SPNNs are based on complex-valued Deep Neural Networks (DNNs), representing phases by spike times.
arXiv Detail & Related papers (2022-04-01T15:06:15Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding [26.654533157221973]
This paper introduces the concept of time-to-first-spike coding into deep SNNs using the kernel-based dynamic threshold and dendrite to overcome the drawback.
According to our results, the proposed methods can reduce inference latency and number of spikes to 22% and less than 1%, compared to those of burst coding.
arXiv Detail & Related papers (2020-03-26T04:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.