Ultra-High-Definition Image Deblurring via Multi-scale Cubic-Mixer
- URL: http://arxiv.org/abs/2206.03678v2
- Date: Wed, 15 Jan 2025 06:32:05 GMT
- Title: Ultra-High-Definition Image Deblurring via Multi-scale Cubic-Mixer
- Authors: Xingchi Chen, Xiuyi Jia, Zhuoran Zheng,
- Abstract summary: transformer-based algorithms are making a splash in the domain of image deblurring.
These algorithms depend on the self-attention mechanism with CNN stem to model long range dependencies between tokens.
- Score: 10.106927124151136
- License:
- Abstract: Currently, transformer-based algorithms are making a splash in the domain of image deblurring. Their achievement depends on the self-attention mechanism with CNN stem to model long range dependencies between tokens. Unfortunately, this ear-pleasing pipeline introduces high computational complexity and makes it difficult to run an ultra-high-definition image on a single GPU in real time. To trade-off accuracy and efficiency, the input degraded image is computed cyclically over three dimensional ($C$, $W$, and $H$) signals without a self-attention mechanism. We term this deep network as Multi-scale Cubic-Mixer, which is acted on both the real and imaginary components after fast Fourier transform to estimate the Fourier coefficients and thus obtain a deblurred image. Furthermore, we combine the multi-scale cubic-mixer with a slicing strategy to generate high-quality results at a much lower computational cost. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring approaches on the several benchmarks and a new ultra-high-definition dataset in terms of accuracy and speed.
Related papers
- EDCSSM: Edge Detection with Convolutional State Space Model [3.649463841174485]
Edge detection in images is the foundation of many complex tasks in computer graphics.
Due to the feature loss caused by multi-layer convolution and pooling architectures, learning-based edge detection models often produce thick edges.
This paper presents an edge detection algorithm which effectively addresses the aforementioned issues.
arXiv Detail & Related papers (2024-09-03T05:13:25Z) - Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
Super-resolution (SR) and image generation are important tasks in computer vision and are widely adopted in real-world applications.
Most existing methods, however, generate images only at fixed-scale magnification and suffer from over-smoothing and artifacts.
Most relevant work applied Implicit Neural Representation (INR) to the denoising diffusion model to obtain continuous-resolution yet diverse and high-quality SR results.
We propose a novel pipeline that can super-resolve an input image or generate from a random noise a novel image at arbitrary scales.
arXiv Detail & Related papers (2024-03-15T12:45:40Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - A Novel Approach to Threshold Quantum Images by using Unsharp
Measurements [0.8287206589886881]
We propose a hybrid quantum approach to threshold and binarize a grayscale image through unsharp measurements.
The proposed methodology uses peaks of the overlapping Gaussians and the distance between neighboring local minima as the variance.
The obtained thresholds are used to binarize a grayscale image by using novel enhanced quantum image representation integrated with a threshold encoder.
arXiv Detail & Related papers (2023-10-16T18:34:40Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
Video frame is an important low-level computation vision task, which can increase frame rate for more fluent visual experience.
Existing methods have achieved great success by employing advanced motion models and synthesis networks.
WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts.
arXiv Detail & Related papers (2023-09-07T06:41:15Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
Whole-Slide Imaging allows for the capturing and digitization of high-resolution images of histological specimen.
transformer architecture has been proposed as a possible candidate for effectively leveraging the high-resolution information.
We propose a novel cascaded cross-attention network (CCAN) based on the cross-attention mechanism that scales linearly with the number of extracted patches.
arXiv Detail & Related papers (2023-05-11T16:42:24Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
arXiv Detail & Related papers (2023-04-20T04:05:22Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Adaptive Fourier Neural Operators: Efficient Token Mixers for
Transformers [55.90468016961356]
We propose an efficient token mixer that learns to mix in the Fourier domain.
AFNO is based on a principled foundation of operator learning.
It can handle a sequence size of 65k and outperforms other efficient self-attention mechanisms.
arXiv Detail & Related papers (2021-11-24T05:44:31Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation.
We use pixel-wise networks; that is, each pixel is processed independently of others.
Our model is up to 18x faster than state-of-the-art baselines.
arXiv Detail & Related papers (2020-12-05T10:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.