Sampling-based techniques for designing school boundaries
- URL: http://arxiv.org/abs/2206.03703v1
- Date: Wed, 8 Jun 2022 06:45:55 GMT
- Title: Sampling-based techniques for designing school boundaries
- Authors: Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Chang-Tien Lu and Naren
Ramakrishnan
- Abstract summary: We propose a set of sampling techniques for designing school boundaries based on the flip proposal.
These techniques can be used as a baseline for comparing redistricting algorithms based on local search.
We empirically touch on both these aspects in regards to the problem of school redistricting.
- Score: 26.73720392872553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, an increasing number of researchers, especially in the realm of
political redistricting, have proposed sampling-based techniques to generate a
subset of plans from the vast space of districting plans. These techniques have
been increasingly adopted by U.S. courts of law and independent commissions as
a tool for identifying partisan gerrymanders. Motivated by these recent
developments, we develop a set of similar sampling techniques for designing
school boundaries based on the flip proposal. Note that the flip proposal here
refers to the change in the districting plan by a single assignment. These
sampling-based techniques serve a dual purpose. They can be used as a baseline
for comparing redistricting algorithms based on local search. Additionally,
these techniques can help to infer the problem characteristics that may be
further used for developing efficient redistricting methods. We empirically
touch on both these aspects in regards to the problem of school redistricting.
Related papers
- Multiscale Parallel Tempering for Fast Sampling on Redistricting Plans [1.1233768932957773]
A persuasive method is to compare the plan with an ensemble of neutrally drawn redistricting plans.
To audit the partisan difference between the ensemble and a given plan, one must ensure that the non-partisan criteria are matched.
In this work, we generate a multiscale parallel tempering approach that makes local moves at each scale.
arXiv Detail & Related papers (2024-01-30T21:33:05Z) - Finding Pareto Efficient Redistricting Plans with Short Bursts [0.0]
This research note extends a recently-proposed single-criterion optimization method to handle the multi-criterion case.
We study the empirical performance of the method in a realistic setting and find it behaves as expected and is not very sensitive to algorithmic parameters.
arXiv Detail & Related papers (2023-04-02T02:17:37Z) - Graph-Embedded Subspace Support Vector Data Description [98.78559179013295]
We propose a novel subspace learning framework for one-class classification.
The proposed framework presents the problem in the form of graph embedding.
We demonstrate improved performance against the baselines and the recently proposed subspace learning methods for one-class classification.
arXiv Detail & Related papers (2021-04-29T14:30:48Z) - Selection-Expansion: A Unifying Framework for Motion-Planning and
Diversity Search Algorithms [69.87173070473717]
We investigate the properties of two diversity search algorithms, the Novelty Search and the Goal Exploration Process algorithms.
The relation to MP algorithms reveals that the smoothness, or lack of smoothness of the mapping between the policy parameter space and the outcome space plays a key role in the search efficiency.
arXiv Detail & Related papers (2021-04-10T13:52:27Z) - Partition-Guided GANs [63.980473635585234]
We design a partitioner that breaks the space into smaller regions, each having a simpler distribution, and training a different generator for each partition.
This is done in an unsupervised manner without requiring any labels.
Experimental results on various standard benchmarks show that the proposed unsupervised model outperforms several recent methods.
arXiv Detail & Related papers (2021-04-02T00:06:53Z) - Colorado in Context: Congressional Redistricting and Competing Fairness
Criteria in Colorado [0.0]
We generate a large random sample of reasonable redistricting plans and determine the partisan balance of each district using returns from state-wide elections in 2018.
We investigate the relationships between partisan outcomes, number of counties which are split, and number of competitive districts in a plan.
arXiv Detail & Related papers (2020-11-11T20:05:50Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution.
We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated.
We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania.
arXiv Detail & Related papers (2020-08-13T23:26:34Z) - The Essential Role of Empirical Validation in Legislative Redistricting
Simulation [0.0]
We apply a recently developed computational method that can efficiently enumerate all possible redistricting plans.
We show that this algorithm scales to a state with a couple of hundred geographical units.
arXiv Detail & Related papers (2020-06-17T20:51:43Z) - Reinforcement Learning as Iterative and Amortised Inference [62.997667081978825]
We use the control as inference framework to outline a novel classification scheme based on amortised and iterative inference.
We show that taking this perspective allows us to identify parts of the algorithmic design space which have been relatively unexplored.
arXiv Detail & Related papers (2020-06-13T16:10:03Z) - Novel Policy Seeking with Constrained Optimization [131.67409598529287]
We propose to rethink the problem of generating novel policies in reinforcement learning tasks.
We first introduce a new metric to evaluate the difference between policies and then design two practical novel policy generation methods.
The two proposed methods, namely the Constrained Task Novel Bisector (CTNB) and the Interior Policy Differentiation (IPD), are derived from the feasible direction method and the interior point method commonly known in the constrained optimization literature.
arXiv Detail & Related papers (2020-05-21T14:39:14Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample.
A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient.
We propose a single framework under which several such methods can be unified.
arXiv Detail & Related papers (2020-04-06T17:58:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.