Adversarial Noises Are Linearly Separable for (Nearly) Random Neural
Networks
- URL: http://arxiv.org/abs/2206.04316v1
- Date: Thu, 9 Jun 2022 07:26:46 GMT
- Title: Adversarial Noises Are Linearly Separable for (Nearly) Random Neural
Networks
- Authors: Huishuai Zhang and Da Yu and Yiping Lu and Di He
- Abstract summary: Adversarial examples, which are usually generated for specific inputs with a specific model, are ubiquitous for neural networks.
In this paper we unveil a surprising property of adversarial noises when they are put together, i.e., adversarial noises crafted by one-step methods are linearly separable if equipped with the corresponding labels.
- Score: 46.13404040937189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples, which are usually generated for specific inputs with a
specific model, are ubiquitous for neural networks. In this paper we unveil a
surprising property of adversarial noises when they are put together, i.e.,
adversarial noises crafted by one-step gradient methods are linearly separable
if equipped with the corresponding labels. We theoretically prove this property
for a two-layer network with randomly initialized entries and the neural
tangent kernel setup where the parameters are not far from initialization. The
proof idea is to show the label information can be efficiently backpropagated
to the input while keeping the linear separability. Our theory and experimental
evidence further show that the linear classifier trained with the adversarial
noises of the training data can well classify the adversarial noises of the
test data, indicating that adversarial noises actually inject a distributional
perturbation to the original data distribution. Furthermore, we empirically
demonstrate that the adversarial noises may become less linearly separable when
the above conditions are compromised while they are still much easier to
classify than original features.
Related papers
- How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Understanding Noise-Augmented Training for Randomized Smoothing [14.061680807550722]
Randomized smoothing is a technique for providing provable robustness guarantees against adversarial attacks.
We show that, without making stronger distributional assumptions, no benefit can be expected from predictors trained with noise-augmentation.
Our analysis has direct implications to the practical deployment of randomized smoothing.
arXiv Detail & Related papers (2023-05-08T14:46:34Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - Benign Overfitting in Adversarially Robust Linear Classification [91.42259226639837]
"Benign overfitting", where classifiers memorize noisy training data yet still achieve a good generalization performance, has drawn great attention in the machine learning community.
We show that benign overfitting indeed occurs in adversarial training, a principled approach to defend against adversarial examples.
arXiv Detail & Related papers (2021-12-31T00:27:31Z) - Nonparametric Regression with Shallow Overparameterized Neural Networks
Trained by GD with Early Stopping [11.24426822697648]
We show that trained neural networks are smooth with respect to their inputs when trained by Gradient Descent (GD)
In the noise-free case the proof does not rely on any kernelization and can be regarded as a finite-width result.
arXiv Detail & Related papers (2021-07-12T11:56:53Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Provable Generalization of SGD-trained Neural Networks of Any Width in
the Presence of Adversarial Label Noise [85.59576523297568]
We consider a one-hidden-layer leaky ReLU network of arbitrary width trained by gradient descent.
We prove that SGD produces neural networks that have classification accuracy competitive with that of the best halfspace over the distribution.
arXiv Detail & Related papers (2021-01-04T18:32:49Z) - How benign is benign overfitting? [96.07549886487526]
We investigate two causes for adversarial vulnerability in deep neural networks: bad data and (poorly) trained models.
Deep neural networks essentially achieve zero training error, even in the presence of label noise.
We identify label noise as one of the causes for adversarial vulnerability.
arXiv Detail & Related papers (2020-07-08T11:07:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.