論文の概要: Learning Non-Vacuous Generalization Bounds from Optimization
- arxiv url: http://arxiv.org/abs/2206.04359v2
- Date: Mon, 22 Jul 2024 13:47:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:25:22.867441
- Title: Learning Non-Vacuous Generalization Bounds from Optimization
- Title(参考訳): 最適化による非バス一般化境界の学習
- Authors: Chengli Tan, Jiangshe Zhang, Junmin Liu,
- Abstract要約: 最適化の観点からは、単純だが空でない一般化を示す。
我々は、勾配アルゴリズムによってアクセスされた仮説セットが本質的にフラクタル的であることを利用して、この目標を達成する。
数値解析により,現代のニューラルネットワークにおいて,本手法が有意な一般化を保証することが実証された。
- 参考スコア(独自算出の注目度): 8.294831479902658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the fundamental challenges in the deep learning community is to theoretically understand how well a deep neural network generalizes to unseen data. However, current approaches often yield generalization bounds that are either too loose to be informative of the true generalization error or only valid to the compressed nets. In this study, we present a simple yet non-vacuous generalization bound from the optimization perspective. We achieve this goal by leveraging that the hypothesis set accessed by stochastic gradient algorithms is essentially fractal-like and thus can derive a tighter bound over the algorithm-dependent Rademacher complexity. The main argument rests on modeling the discrete-time recursion process via a continuous-time stochastic differential equation driven by fractional Brownian motion. Numerical studies demonstrate that our approach is able to yield plausible generalization guarantees for modern neural networks such as ResNet and Vision Transformer, even when they are trained on a large-scale dataset (e.g. ImageNet-1K).
- Abstract(参考訳): ディープラーニングコミュニティにおける基本的な課題の1つは、ディープニューラルネットワークがいかにして、目に見えないデータに一般化するかを理論的に理解することである。
しかし、現在のアプローチはしばしば、真の一般化誤差を知らせるにはゆるすぎるか、圧縮されたネットにのみ有効であるような一般化境界をもたらす。
本研究では,最適化の観点から,単純だが空でない一般化を提案する。
我々は、確率勾配アルゴリズムによってアクセスされる仮説セットが本質的にフラクタル的であり、したがってアルゴリズム依存のラデマッハ複雑性よりも厳密な境界を導き出すことができることを活用して、この目標を達成する。
主な議論は、分数的ブラウン運動によって駆動される連続時間確率微分方程式を通して離散時間再帰過程をモデル化することにある。
数値解析により、大規模なデータセット(例: ImageNet-1K)でトレーニングされた場合でも、ResNetやVision Transformerのような現代のニューラルネットワークに対して、我々のアプローチが妥当な一般化保証が得られることが示された。
関連論文リスト
- Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
逆問題では、スパーシティ事前の組み込みは、解に対する正則化効果をもたらす。
本稿では,ガウスの混合として事前に定式化された確率的疎性について提案する。
我々は、このネットワークのパラメータを推定するために、教師なしのトレーニング戦略と教師なしのトレーニング戦略をそれぞれ導入した。
論文 参考訳(メタデータ) (2024-01-29T22:52:57Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
ニューラル・タンジェント・カーネル(NTK)における一層ReLUネットワークのトレーニングについて検討した。
我々は、ニューラルネットワークが、テクティトビア一般化NTKと呼ばれる異なる制限カーネルを持っていることを示した。
ニューラルネットの様々な特性をこの新しいカーネルで研究する。
論文 参考訳(メタデータ) (2023-01-01T02:11:39Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - On the generalization of learning algorithms that do not converge [54.122745736433856]
ディープラーニングの一般化解析は、訓練が一定の点に収束すると仮定するのが一般的である。
最近の結果は、実際には勾配降下に最適化されたディープニューラルネットワークの重みは、しばしば無限に振動することを示している。
論文 参考訳(メタデータ) (2022-08-16T21:22:34Z) - Why Robust Generalization in Deep Learning is Difficult: Perspective of
Expressive Power [15.210336733607488]
その結果, ニューラルネットワークのサイズが指数関数的でない限り, 分割されたデータの二項分類問題に対して, 一定の頑健な一般化ギャップが存在することがわかった。
ネットワークサイズに対して$exp(mathcalO(k))$を改良し、低ロバストな一般化誤差を実現する。
論文 参考訳(メタデータ) (2022-05-27T09:53:04Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
線形測定の少ないスパース再構成に適したニューラルネットワークのクラスに対する一般化誤差解析を提案する。
現実的な条件下では、一般化誤差は層数で対数的にしかスケールせず、測定数ではほとんど線形である。
論文 参考訳(メタデータ) (2020-10-29T15:05:43Z) - Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
Regression and Infinitely Wide Neural Networks [17.188280334580195]
トレーニングデータセットを越えた一般化は、マシンラーニングの主な目標である。
最近のディープニューラルネットワークの観測は、古典統計学の従来の知恵と矛盾している。
より多くのデータが、カーネルがノイズや表現できないときに一般化を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-06-23T17:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。