Discriminative and Generative Learning for Linear Estimation of Random
Signals [Lecture Notes]
- URL: http://arxiv.org/abs/2206.04432v2
- Date: Mon, 24 Apr 2023 17:33:44 GMT
- Title: Discriminative and Generative Learning for Linear Estimation of Random
Signals [Lecture Notes]
- Authors: Nir Shlezinger and Tirza Routtenberg
- Abstract summary: Inference tasks in signal processing are often characterized by reliable statistical modeling with missing instance-specific parameters.
One conventional approach uses data to estimate these missing parameters and then infers based on the estimated model.
This lecture note introduces the concepts of generative and discriminative learning for inference with a partially-known statistical model.
- Score: 40.38581446579124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inference tasks in signal processing are often characterized by the
availability of reliable statistical modeling with some missing
instance-specific parameters. One conventional approach uses data to estimate
these missing parameters and then infers based on the estimated model.
Alternatively, data can also be leveraged to directly learn the inference
mapping end-to-end. These approaches for combining partially-known statistical
models and data in inference are related to the notions of generative and
discriminative models used in the machine learning literature, typically
considered in the context of classifiers. The goal of this lecture note is to
introduce the concepts of generative and discriminative learning for inference
with a partially-known statistical model. While machine learning systems often
lack the interpretability of traditional signal processing methods, we focus on
a simple setting where one can interpret and compare the approaches in a
tractable manner that is accessible and relevant to signal processing readers.
In particular, we exemplify the approaches for the task of Bayesian signal
estimation in a jointly Gaussian setting with the mean-squared error (MSE)
objective, i.e., a linear estimation setting.
Related papers
- Generative vs. Discriminative modeling under the lens of uncertainty quantification [0.929965561686354]
In this paper, we undertake a comparative analysis of generative and discriminative approaches.
We compare the ability of both approaches to leverage information from various sources in an uncertainty aware inference.
We propose a general sampling scheme enabling supervised learning for both approaches, as well as semi-supervised learning when compatible with the considered modeling approach.
arXiv Detail & Related papers (2024-06-13T14:32:43Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
We propose the first general approach to handle model misspecification that works across different classes of simulation-based inference methods.
We show that our method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.
arXiv Detail & Related papers (2023-05-25T09:06:26Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
We find that MAUVE can quantify the gaps between the distributions of human-written text and those of modern neural language models.
We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics.
arXiv Detail & Related papers (2022-12-30T07:37:40Z) - Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST) [1.8047694351309207]
We develop a statistical framework for model predictions based on transfer learning, called RECaST.
We mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models.
We examine our method's performance in a simulation study and in an application to real hospital data.
arXiv Detail & Related papers (2022-11-29T19:39:47Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel
Data [4.550919471480445]
We develop a data-driven smoothing technique for high-dimensional and non-linear panel data models.
The weights are determined by a data-driven way and depend on the similarity between the corresponding functions.
We conduct a simulation study which shows that the prediction can be greatly improved by using our estimator.
arXiv Detail & Related papers (2019-12-30T09:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.