Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry
- URL: http://arxiv.org/abs/2206.04663v1
- Date: Thu, 9 Jun 2022 17:58:15 GMT
- Title: Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry
- Authors: Faris M. Sbahi, Antonio J. Martinez, Sahil Patel, Dmitri Saberi, Jae
Hyeon Yoo, Geoffrey Roeder, Guillaume Verdon
- Abstract summary: We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
- Score: 3.5097082077065003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dual tasks of quantum Hamiltonian learning and quantum Gibbs sampling are
relevant to many important problems in physics and chemistry. In the low
temperature regime, algorithms for these tasks often suffer from
intractabilities, for example from poor sample- or time-complexity. With the
aim of addressing such intractabilities, we introduce a generalization of
quantum natural gradient descent to parameterized mixed states, as well as
provide a robust first-order approximating algorithm, Quantum-Probabilistic
Mirror Descent. We prove data sample efficiency for the dual tasks using tools
from information geometry and quantum metrology, thus generalizing the seminal
result of classical Fisher efficiency to a variational quantum algorithm for
the first time. Our approaches extend previously sample-efficient techniques to
allow for flexibility in model choice, including to spectrally-decomposed
models like Quantum Hamiltonian-Based Models, which may circumvent intractable
time complexities. Our first-order algorithm is derived using a novel quantum
generalization of the classical mirror descent duality. Both results require a
special choice of metric, namely, the Bogoliubov-Kubo-Mori metric. To test our
proposed algorithms numerically, we compare their performance to existing
baselines on the task of quantum Gibbs sampling for the transverse field Ising
model. Finally, we propose an initialization strategy leveraging geometric
locality for the modelling of sequences of states such as those arising from
quantum-stochastic processes. We demonstrate its effectiveness empirically for
both real and imaginary time evolution while defining a broader class of
potential applications.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.