Quantum Natural Stochastic Pairwise Coordinate Descent
- URL: http://arxiv.org/abs/2407.13858v1
- Date: Thu, 18 Jul 2024 18:57:29 GMT
- Title: Quantum Natural Stochastic Pairwise Coordinate Descent
- Authors: Mohammad Aamir Sohail, Mohsen Heidari Khoozani, S. Sandeep Pradhan,
- Abstract summary: Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
- Score: 6.187270874122921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years. VQAs employ parameterized quantum circuits, which are typically optimized using gradient-based methods. However, these methods often exhibit sub-optimal convergence performance due to their dependence on Euclidean geometry. The quantum natural gradient descent (QNGD) optimization method, which considers the geometry of the quantum state space via a quantum information (Riemannian) metric tensor, provides a more effective optimization strategy. Despite its advantages, QNGD encounters notable challenges for learning from quantum data, including the no-cloning principle, which prohibits the replication of quantum data, state collapse, and the measurement postulate, which leads to the stochastic loss function. This paper introduces the quantum natural stochastic pairwise coordinate descent (2-QNSCD) optimization method. This method leverages the curved geometry of the quantum state space through a novel ensemble-based quantum information metric tensor, offering a more physically realizable optimization strategy for learning from quantum data. To improve computational efficiency and reduce sample complexity, we develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $\Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements. Our approach avoids the need for multiple copies of quantum data, thus adhering to the no-cloning principle. We provide a detailed theoretical foundation for our optimization method, along with an exponential convergence analysis. Additionally, we validate the utility of our method through a series of numerical experiments.
Related papers
- Quantum Natural Gradient with Geodesic Corrections for Small Shallow Quantum Circuits [0.0]
We extend the Quantum Natural Gradient (QNG) method by introducing higher-order and geodesic corrections.
Our approach paves the way for more efficient quantum algorithms, leveraging the advantages of geometric methods.
arXiv Detail & Related papers (2024-09-05T15:54:02Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.