Efficient tensor network simulation of quantum many-body physics on
sparse graphs
- URL: http://arxiv.org/abs/2206.04701v1
- Date: Thu, 9 Jun 2022 18:00:03 GMT
- Title: Efficient tensor network simulation of quantum many-body physics on
sparse graphs
- Authors: Subhayan Sahu and Brian Swingle
- Abstract summary: We study tensor network states defined on an underlying graph which is sparsely connected.
We find that message-passing inference algorithms can lead to efficient computation of local expectation values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study tensor network states defined on an underlying graph which is
sparsely connected. Generic sparse graphs are expander graphs with a high
probability, and one can represent volume law entangled states efficiently with
only polynomial resources. We find that message-passing inference algorithms
such as belief propagation can lead to efficient computation of local
expectation values for a class of tensor network states defined on sparse
graphs. As applications, we study local properties of square root states, graph
states, and also employ this method to variationally prepare ground states of
gapped Hamiltonians defined on generic graphs. Using the variational method we
study the phase diagram of the transverse field quantum Ising model defined on
sparse expander graphs.
Related papers
- Distinguishing Graph States by the Properties of Their Marginals [0.0]
We introduce a family of easy-to-compute LU-invariants based on the marginal structure of the graphs.
We show that these invariants can uniquely identify all LU-orbits and entanglement classes of every graph state of 8 qubits or less.
We also discuss examples of entanglement classes with more nodes, where their marginal structure does not allow us to tell them apart.
arXiv Detail & Related papers (2024-06-14T12:03:10Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Multipartite Entanglement Distribution in Quantum Networks using Subgraph Complementations [9.32782060570252]
We propose a novel approach for distributing graph states across a quantum network.
We show that the distribution of graph states can be characterized by a system of subgraph complementations.
We find a close to optimal sequence of subgraph complementation operations to distribute an arbitrary graph state.
arXiv Detail & Related papers (2023-08-25T23:03:25Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Understanding graph embedding methods and their applications [1.14219428942199]
Graph embedding techniques can be effective in converting high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces.
The generated nonlinear and highly informative graph embeddings in the latent space can be conveniently used to address different downstream graph analytics tasks.
arXiv Detail & Related papers (2020-12-15T00:30:22Z) - Verification of graph states in an untrusted network [0.0]
We consider verification of graph states generated by an untrusted source and shared between a network of possibly dishonest parties.
This has implications in certifying the application of graph states for various distributed tasks.
We present a protocol which is globally efficient for a large family of useful graph states.
arXiv Detail & Related papers (2020-07-26T13:17:21Z) - Natural Graph Networks [80.77570956520482]
We show that the more general concept of naturality is sufficient for a graph network to be well-defined.
We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks.
arXiv Detail & Related papers (2020-07-16T14:19:06Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.