論文の概要: Response to: Significance and stability of deep learning-based
identification of subtypes within major psychiatric disorders. Molecular
Psychiatry (2022)
- arxiv url: http://arxiv.org/abs/2206.04934v1
- Date: Fri, 10 Jun 2022 08:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 15:02:04.443118
- Title: Response to: Significance and stability of deep learning-based
identification of subtypes within major psychiatric disorders. Molecular
Psychiatry (2022)
- Title(参考訳): 主な精神疾患における深層学習に基づくサブタイプ同定の意義と安定性
分子精神医学(2022年)
- Authors: Xizhe Zhang, Fei Wang, Weixiong Zhang
- Abstract要約: ウィンターとハーンは、機械学習を用いた神経生物学的特徴に基づいて、主要な精神医学疾患(MPD)のサブタイプを特定する研究についてコメントした。
基本的な機械学習の概念に対する誤解を指摘し、関連するいくつかの重要な問題を概説する必要があります。
- 参考スコア(独自算出の注目度): 13.825542780337493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Winter and Hahn [1] commented on our work on identifying subtypes
of major psychiatry disorders (MPDs) based on neurobiological features using
machine learning [2]. They questioned the generalizability of our methods and
the statistical significance, stability, and overfitting of the results, and
proposed a pipeline for disease subtyping. We appreciate their earnest
consideration of our work, however, we need to point out their misconceptions
of basic machine-learning concepts and delineate some key issues involved.
- Abstract(参考訳): 近年,Winter and Hahn [1] は,機械学習 [2] を用いた神経生物学的特徴に基づく主要な精神医学疾患(MPD)のサブタイプ同定に関する研究についてコメントしている。
研究チームは,本手法の一般化可能性と結果の統計的意義,安定性,過度な適合性に疑問を呈し,病型分類のためのパイプラインを提案した。
彼らの仕事に対する真剣な配慮に感謝していますが、基本的な機械学習の概念に対する誤解を指摘し、関連するいくつかの重要な問題を要約する必要があります。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Precision psychiatry: predicting predictability [0.0]
私は精密精神医学の分野での10の課題をレビューします。
現実の人口と現実的な臨床結果の定義についての研究が必要である。
プラセボ効果や処方薬の非順守などの治療関連因子について検討する。
論文 参考訳(メタデータ) (2023-06-21T13:10:46Z) - Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology [0.0]
現在の技術は、行動特性を改善するためのエキサイティングな機会です。
携帯電話のGPSやスマートウォッチの加速度計などの受動的センサーストリームを連続的に収集する新機能は、新しい疑問の道を開く。
理論上、現在の技術で捉えられるものには大きな可能性があるが、それ自体は大きな計算課題である。
論文 参考訳(メタデータ) (2023-05-24T17:45:10Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
ディープニューラルネットワーク、特に畳み込みニューラルネットワークは、医療画像の強力なツールへと進化してきた。
ここでは、まず、方法論的鍵概念と結果の方法論的約束について紹介する。
神経画像に基づく精神医学研究における最近の応用を振り返り、現在の課題について論じる。
論文 参考訳(メタデータ) (2023-01-20T12:05:59Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
メンタルヘルスの検出や予測のための機械学習モデルの開発では、研究が増加している。
本研究では,マルチタスク学習に基づくバイアス緩和手法を不安予測モデルに適用し,公平性分析を行うことを目的とする。
分析の結果、我々の不安予測ベースモデルでは、年齢、収入、民族性、そして参加者が米国で生まれたかどうかに偏りが生じていた。
論文 参考訳(メタデータ) (2022-08-07T02:28:32Z) - Adapting Deep Learning Methods for Mental Health Prediction on Social
Media [10.102073937554488]
メンタルヘルスは、個人の幸福のために重要な課題となる。
深層学習モデルを用いてソーシャルメディア利用者の精神状態を検出するという課題に取り組む。
ユーザが9つの異なる障害のうちの1つに苦しむかどうかを予測するバイナリ分類タスクでは、階層的な注意ネットワークが以前設定された4つの障害のベンチマークを上回っている。
論文 参考訳(メタデータ) (2020-03-17T10:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。