論文の概要: Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology
- arxiv url: http://arxiv.org/abs/2305.15385v1
- Date: Wed, 24 May 2023 17:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 13:52:40.207562
- Title: Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology
- Title(参考訳): フィールド間リンクの欠如としての行動定量化:デジタル精神医学ツールとその神経生物学における役割
- Authors: Michaela Ennis
- Abstract要約: 現在の技術は、行動特性を改善するためのエキサイティングな機会です。
携帯電話のGPSやスマートウォッチの加速度計などの受動的センサーストリームを連続的に収集する新機能は、新しい疑問の道を開く。
理論上、現在の技術で捉えられるものには大きな可能性があるが、それ自体は大きな計算課題である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The great behavioral heterogeneity observed between individuals with the same
psychiatric disorder and even within one individual over time complicates both
clinical practice and biomedical research. However, modern technologies are an
exciting opportunity to improve behavioral characterization. Existing
psychiatry methods that are qualitative or unscalable, such as patient surveys
or clinical interviews, can now be collected at a greater capacity and analyzed
to produce new quantitative measures. Furthermore, recent capabilities for
continuous collection of passive sensor streams, such as phone GPS or
smartwatch accelerometer, open avenues of novel questioning that were
previously entirely unrealistic. Their temporally dense nature enables a
cohesive study of real-time neural and behavioral signals.
To develop comprehensive neurobiological models of psychiatric disease, it
will be critical to first develop strong methods for behavioral quantification.
There is huge potential in what can theoretically be captured by current
technologies, but this in itself presents a large computational challenge --
one that will necessitate new data processing tools, new machine learning
techniques, and ultimately a shift in how interdisciplinary work is conducted.
In my thesis, I detail research projects that take different perspectives on
digital psychiatry, subsequently tying ideas together with a concluding
discussion on the future of the field. I also provide software infrastructure
where relevant, with extensive documentation.
Major contributions include scientific arguments and proof of concept results
for daily free-form audio journals as an underappreciated psychiatry research
datatype, as well as novel stability theorems and pilot empirical success for a
proposed multi-area recurrent neural network architecture.
- Abstract(参考訳): 同じ精神疾患を持つ人と、時間とともに1人以内にも観察される大きな行動の多様性は、臨床実践と生物医学研究の両方を複雑にする。
しかし、現代の技術は行動特性を改善するエキサイティングな機会である。
患者調査や臨床面接など、質的、あるいは測定不能な既存の精神医学的手法は、より多くの能力で収集され、新しい定量的尺度を作成するために分析される。
さらに、携帯電話のGPSやスマートウォッチの加速度計などの受動的センサーストリームを連続的に収集する能力は、これまで完全に現実的ではなかった新しい疑問の道を開いた。
その時間的に密集した性質は、リアルタイムの神経および行動信号の凝集研究を可能にする。
精神疾患の包括的な神経生物学モデルを開発するためには,まず行動定量化のための強力な手法を開発することが重要である。
それは、新しいデータ処理ツール、新しい機械学習技術、そして究極的には、学際的な作業の実施方法のシフトを必要とします。
私の論文では、デジタル精神医学の異なる視点を採る研究プロジェクトについて詳述し、その後、その分野の将来に関する結論づけられた議論とアイデアを結びつけます。
関連するソフトウェアインフラストラクチャにも,広範なドキュメントを提供しています。
主な貢献は、科学的議論と、精神医学研究データ型として日々のフリーフォームオーディオジャーナルの概念結果の証明、そして、新しい安定性定理と、提案されたマルチ領域のリカレントニューラルネットワークアーキテクチャのパイロット実験的な成功である。
関連論文リスト
- Enhancing learning in artificial neural networks through cellular heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
この研究は、抑うつのリスクがある個人を特定するために、ロマタイズド・シンハラのソーシャルメディアデータの利用を探求する。
言語パターン、感情、行動の手がかりを分析することにより、抑うつ症状の自動スクリーニングのための機械学習ベースのフレームワークが提示される。
論文 参考訳(メタデータ) (2024-03-28T10:31:09Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Precision psychiatry: predicting predictability [0.0]
私は精密精神医学の分野での10の課題をレビューします。
現実の人口と現実的な臨床結果の定義についての研究が必要である。
プラセボ効果や処方薬の非順守などの治療関連因子について検討する。
論文 参考訳(メタデータ) (2023-06-21T13:10:46Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - A Rubric for Human-like Agents and NeuroAI [2.749726993052939]
コントリビュートされた研究は、振る舞いの模倣から機械学習メソッドのテストまで幅広い。
これら3つの目標のうちの1つが自動的に他の目標の進捗に変換されることは想定できない。
これは、弱く強いニューロAIとヒトのようなエージェントの例を用いて明らかにされている。
論文 参考訳(メタデータ) (2022-12-08T16:59:40Z) - Multi-site Diagnostic Classification Of Schizophrenia Using 3D CNN On
Aggregated Task-based fMRI Data [0.0]
統合失調症の発展の基盤となるメカニズムと、その再発、症状学、治療は謎のままである。
統合失調症の多様性と複雑な性質に対処するための適切な分析ツールがないことは、この疾患の発生に寄与する要因の1つである可能性がある。
深層学習は統合失調症の根底にあるメカニズムを理解する強力なツールになる可能性がある。
論文 参考訳(メタデータ) (2022-10-11T08:12:36Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。