Denoising Generalized Expectation-Consistent Approximation for MRI Image
Recovery
- URL: http://arxiv.org/abs/2206.05049v1
- Date: Thu, 9 Jun 2022 00:58:44 GMT
- Title: Denoising Generalized Expectation-Consistent Approximation for MRI Image
Recovery
- Authors: Saurav K. Shastri, Rizwan Ahmad, Christopher A. Metzler, and Philip
Schniter
- Abstract summary: In inverse problems, plug-and-play (DNN) methods have been developed that replace the step in a convex optimization with a call to an application-specific denoiser, often implemented using a deep neural network (DNN)
Although such methods have been successful, they can be improved. For example, denoisers are usually designed/trained to remove white noise, but the neural denoiser input error is far from white or Gaussian.
In this paper, we propose an algorithm that offers predictable error statistics each iteration, as well as a new image denoiser that leverages those statistics.
- Score: 19.497777961872448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To solve inverse problems, plug-and-play (PnP) methods have been developed
that replace the proximal step in a convex optimization algorithm with a call
to an application-specific denoiser, often implemented using a deep neural
network (DNN). Although such methods have been successful, they can be
improved. For example, denoisers are usually designed/trained to remove white
Gaussian noise, but the denoiser input error in PnP algorithms is usually far
from white or Gaussian. Approximate message passing (AMP) methods provide white
and Gaussian denoiser input error, but only when the forward operator is a
large random matrix. In this work, for Fourier-based forward operators, we
propose a PnP algorithm based on generalized expectation-consistent (GEC)
approximation -- a close cousin of AMP -- that offers predictable error
statistics at each iteration, as well as a new DNN denoiser that leverages
those statistics. We apply our approach to magnetic resonance imaging (MRI)
image recovery and demonstrate its advantages over existing PnP and AMP
methods.
Related papers
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
This paper presents a new convergent Plug-and-fidelity Descent (Play) algorithm.
The algorithm converges for a wider range of regular convexization parameters, thus allowing more accurate restoration of an image.
arXiv Detail & Related papers (2023-01-31T16:11:47Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play () methods solve ill proximal-posed inverse problems through algorithms by replacing a neural network operator by a denoising operator.
We show that this denoiser actually correspond to a gradient function.
arXiv Detail & Related papers (2022-01-31T14:05:20Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
We introduce a novel algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem.
Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE)
We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
arXiv Detail & Related papers (2021-05-31T13:33:21Z) - Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie [13.476505672245603]
This paper develops theory, methods, and provably convergent algorithms for performing Bayesian inference with priors.
We introduce two algorithms: 1) -ULA (Unadjusted Langevin) Algorithm inference for Monte Carlo sampling and MMSE; and 2) quantitative-SGD (Stochastic Gradient Descent) for inference.
The algorithms are demonstrated on several problems such as image denoisering, inpainting, and denoising, where they are used for point estimation as well as for uncertainty visualisation and regularity.
arXiv Detail & Related papers (2021-03-08T12:46:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.