PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
- URL: http://arxiv.org/abs/2504.10375v1
- Date: Mon, 14 Apr 2025 16:23:15 GMT
- Title: PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
- Authors: Maud Biquard, Marie Chabert, Florence Genin, Christophe Latry, Thomas Oberlin,
- Abstract summary: This paper introduces PG-DPIR, an efficient.<n>poisson-Gaussian inverse problems, adapted from DPIR.<n>Experiments are conducted on satellite image restoration and super-resolution problems.
- Score: 4.879530644978008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Poisson-Gaussian noise describes the noise of various imaging systems thus the need of efficient algorithms for Poisson-Gaussian image restoration. Deep learning methods offer state-of-the-art performance but often require sensor-specific training when used in a supervised setting. A promising alternative is given by plug-and-play (PnP) methods, which consist in learning only a regularization through a denoiser, allowing to restore images from several sources with the same network. This paper introduces PG-DPIR, an efficient PnP method for high-count Poisson-Gaussian inverse problems, adapted from DPIR. While DPIR is designed for white Gaussian noise, a naive adaptation to Poisson-Gaussian noise leads to prohibitively slow algorithms due to the absence of a closed-form proximal operator. To address this, we adapt DPIR for the specificities of Poisson-Gaussian noise and propose in particular an efficient initialization of the gradient descent required for the proximal step that accelerates convergence by several orders of magnitude. Experiments are conducted on satellite image restoration and super-resolution problems. High-resolution realistic Pleiades images are simulated for the experiments, which demonstrate that PG-DPIR achieves state-of-the-art performance with improved efficiency, which seems promising for on-ground satellite processing chains.
Related papers
- Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse
Problems [8.673558396669806]
Plug-noise-and-Play (Play) methods are efficient iterative algorithms for solving illposed image inverse problems.
We propose two.
algorithms based on the Bregman Score gradient Denoise inverse problems.
arXiv Detail & Related papers (2023-06-06T07:36:47Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
This paper presents a new convergent Plug-and-fidelity Descent (Play) algorithm.
The algorithm converges for a wider range of regular convexization parameters, thus allowing more accurate restoration of an image.
arXiv Detail & Related papers (2023-01-31T16:11:47Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Denoising Generalized Expectation-Consistent Approximation for MRI Image
Recovery [19.497777961872448]
In inverse problems, plug-and-play (DNN) methods have been developed that replace the step in a convex optimization with a call to an application-specific denoiser, often implemented using a deep neural network (DNN)
Although such methods have been successful, they can be improved. For example, denoisers are usually designed/trained to remove white noise, but the neural denoiser input error is far from white or Gaussian.
In this paper, we propose an algorithm that offers predictable error statistics each iteration, as well as a new image denoiser that leverages those statistics.
arXiv Detail & Related papers (2022-06-09T00:58:44Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.