Causal Balancing for Domain Generalization
- URL: http://arxiv.org/abs/2206.05263v1
- Date: Fri, 10 Jun 2022 17:59:11 GMT
- Title: Causal Balancing for Domain Generalization
- Authors: Xinyi Wang, Michael Saxon, Jiachen Li, Hongyang Zhang, Kun Zhang,
William Yang Wang
- Abstract summary: We propose a balanced mini-batch sampling strategy to reduce the domain-specific spurious correlations in observed training distributions.
We provide an identifiability guarantee of the source of spuriousness and show that our proposed approach provably samples from a balanced, spurious-free distribution.
- Score: 95.97046583437145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While machine learning models rapidly advance the state-of-the-art on various
real-world tasks, out-of-domain (OOD) generalization remains a challenging
problem given the vulnerability of these models to spurious correlations. While
current domain generalization methods usually focus on enforcing certain
invariance properties across different domains by new loss function designs, we
propose a balanced mini-batch sampling strategy to reduce the domain-specific
spurious correlations in the observed training distributions. More
specifically, we propose a two-phased method that 1) identifies the source of
spurious correlations, and 2) builds balanced mini-batches free from spurious
correlations by matching on the identified source. We provide an
identifiability guarantee of the source of spuriousness and show that our
proposed approach provably samples from a balanced, spurious-free distribution
over all training environments. Experiments are conducted on three computer
vision datasets with documented spurious correlations, demonstrating
empirically that our balanced mini-batch sampling strategy improves the
performance of four different established domain generalization model baselines
compared to the random mini-batch sampling strategy.
Related papers
- Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
In open-world scenarios, global models may struggle to predict well on entirely new domain data captured by certain media.
Existing methods still rely on strong statistical correlations between samples and labels to address this issue.
We introduce FedCD, an overall optimization framework at both the local and global levels.
arXiv Detail & Related papers (2024-07-27T05:06:31Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Strategic Distribution Shift of Interacting Agents via Coupled Gradient
Flows [6.064702468344376]
We propose a novel framework for analyzing the dynamics of distribution shift in real-world systems.
We show that our approach captures well-documented forms of distribution shifts like polarization and disparate impacts that simpler models cannot capture.
arXiv Detail & Related papers (2023-07-03T17:18:50Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.