Greedy Relaxations of the Sparsest Permutation Algorithm
- URL: http://arxiv.org/abs/2206.05421v1
- Date: Sat, 11 Jun 2022 05:00:36 GMT
- Title: Greedy Relaxations of the Sparsest Permutation Algorithm
- Authors: Wai-Yin Lam, Bryan Andrews, Joseph Ramsey
- Abstract summary: We develop a class of algorithms, namely GRaSP, that are efficient and pointwise consistent under increasingly weaker assumptions than faithfulness.
The most relaxed form of GRaSP outperforms many state-of-the-art causal search algorithms in simulation.
- Score: 4.125187280299247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been an increasing interest in methods that exploit permutation
reasoning to search for directed acyclic causal models, including the "Ordering
Search" of Teyssier and Kohler and GSP of Solus, Wang and Uhler. We extend the
methods of the latter by a permutation-based operation, tuck, and develop a
class of algorithms, namely GRaSP, that are efficient and pointwise consistent
under increasingly weaker assumptions than faithfulness. The most relaxed form
of GRaSP outperforms many state-of-the-art causal search algorithms in
simulation, allowing efficient and accurate search even for dense graphs and
graphs with more than 100 variables.
Related papers
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration
of Multi-Armed Bandit [65.268245109828]
We study the real-valued pure exploration problem in the multi-armed bandit (R-CPE-MAB)
Existing methods in the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits.
We propose an algorithm named the gap-based exploration (CombGapE) algorithm, whose sample complexity matches the lower bound.
arXiv Detail & Related papers (2023-06-15T15:37:31Z) - Decision Diagram-Based Branch-and-Bound with Caching for Dominance and
Suboptimality Detection [9.175779296469194]
This paper presents new ingredients to speed up the search by exploiting the structure of dynamic programming models.
The key idea is to prevent the repeated expansion of nodes corresponding to the same dynamic programming states by querying expansion thresholds cached throughout the search.
Experiments show that the pruning brought by this caching mechanism allows significantly reducing the number of nodes expanded by the algorithm.
arXiv Detail & Related papers (2022-11-22T10:18:33Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Efficient Permutation Discovery in Causal DAGs [9.22466799504763]
We introduce an efficient algorithm for finding sparse permutations of a directed acyclic graph.
We show that our method with depth $w$ runs in $O(pw+3)$ time.
We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime.
arXiv Detail & Related papers (2020-11-06T21:56:41Z) - Evolutionary Algorithm and Multifactorial Evolutionary Algorithm on
Clustered Shortest-Path Tree problem [2.578242050187029]
Clustered Shortest-Path Tree Problem (CluSPT) is an NP-hard problem.
To enhance the performance of the search process, two approaches are proposed.
arXiv Detail & Related papers (2020-10-19T08:37:18Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
arXiv Detail & Related papers (2020-05-05T08:34:58Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
This chapter compiles a number of results that apply the theory of parameterized running-time analysis of randomized algorithms.
We outline the main results and proof techniques for a collection of randomized searchs tasked to solve NP-hard optimization problems.
arXiv Detail & Related papers (2020-01-15T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.