論文の概要: Luminance-Guided Chrominance Image Enhancement for HEVC Intra Coding
- arxiv url: http://arxiv.org/abs/2206.05432v1
- Date: Sat, 11 Jun 2022 06:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-19 12:58:17.968976
- Title: Luminance-Guided Chrominance Image Enhancement for HEVC Intra Coding
- Title(参考訳): HEVCイントラ符号化のための輝度誘導クロミナンス画像強調
- Authors: Hewei Liu, Renwei Yang, Shuyuan Zhu, Xing Wen and Bing Zeng
- Abstract要約: HEVC内符号化のための輝度誘導クロミナンス画像強調畳み込みニューラルネットワークを提案する。
提案手法をHEVCイントラ符号化によるカラー画像の圧縮に適用すると,UとVの画像のHEVCよりも28.96%,BDレートが16.74%向上する。
- 参考スコア(独自算出の注目度): 26.17803057998609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a luminance-guided chrominance image enhancement
convolutional neural network for HEVC intra coding. Specifically, we firstly
develop a gated recursive asymmetric-convolution block to restore each degraded
chrominance image, which generates an intermediate output. Then, guided by the
luminance image, the quality of this intermediate output is further improved,
which finally produces the high-quality chrominance image. When our proposed
method is adopted in the compression of color images with HEVC intra coding, it
achieves 28.96% and 16.74% BD-rate gains over HEVC for the U and V images,
respectively, which accordingly demonstrate its superiority.
- Abstract(参考訳): 本稿では,HEVCイントラ符号化のための輝度誘導クロミナンス画像強調畳み込みニューラルネットワークを提案する。
具体的には、まずゲート再帰的非対称畳み込みブロックを開発し、劣化した各色調画像を復元し、中間出力を生成する。
そして、輝度画像に導かれ、この中間出力の品質をさらに向上し、最終的に高品質のクロミナンス画像を生成する。
提案手法をHEVCイントラ符号化によるカラー画像の圧縮に適用すると,UとVのHEVCよりも28.96%,BDレートが16.74%向上し,その優位性を示した。
関連論文リスト
- LTCF-Net: A Transformer-Enhanced Dual-Channel Fourier Framework for Low-Light Image Restoration [1.049712834719005]
低照度画像の高精細化を目的とした新しいネットワークアーキテクチャであるLTCF-Netを導入する。
提案手法では2つの色空間(LABとYUV)を用いて色情報を効率的に分離処理する。
我々のモデルは、画像コンテンツを包括的に理解するためのTransformerアーキテクチャを取り入れている。
論文 参考訳(メタデータ) (2024-11-24T07:21:17Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement [10.899693396348171]
LCDBNetは、輝度調整ネットワーク(LAN)と色復元ネットワーク(CRN)の2つのブランチで構成されている。
LANは、長距離依存と局所的な注意相関を利用した輝度認識機能を学ぶ責任を負う。
CRNはマルチレベルウェーブレット分解によるディテールセンシティブな特徴の学習に重点を置いている。
最後に、融合ネットワークは、学習した特徴をブレンドして視覚的に印象的な画像を生成するように設計されている。
論文 参考訳(メタデータ) (2023-07-18T09:52:48Z) - Very Low-Resolution Iris Recognition Via Eigen-Patch Super-Resolution
and Matcher Fusion [69.53542497693086]
局所像パッチの固有変換に基づいて虹彩画像の再構成に用いる超解像アルゴリズムの評価を行った。
コントラストの強化は再現性を向上させるのに用いられ、マーカ融合は虹彩認識性能を改善するために採用されている。
論文 参考訳(メタデータ) (2022-10-18T11:25:19Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - TSN-CA: A Two-Stage Network with Channel Attention for Low-Light Image
Enhancement [11.738203047278848]
本稿では,低照度画像の明るさを高めるために,チャネル注意型2段階ネットワーク(TSN-CA)を提案する。
本手法が明度向上に優れた効果を発揮できることを示すため,広範にわたる実験を行った。
論文 参考訳(メタデータ) (2021-10-06T03:20:18Z) - VCGAN: Video Colorization with Hybrid Generative Adversarial Network [22.45196398040388]
ハイブリッド生成適応ネットワーク(VCGAN)によるハイブリッド映像のカラー化は、エンドツーエンド学習を用いたカラー化への改良されたアプローチである。
実験の結果,VCGANは既存の手法よりも高品質で時間的に一貫したカラービデオを生成することがわかった。
論文 参考訳(メタデータ) (2021-04-26T05:50:53Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
ロスシー画像圧縮は、通信帯域を節約するために広範に行われ、望ましくない圧縮アーティファクトをもたらす。
圧縮画像に対する資源効率の高いブラインド品質向上手法(RBQE)を提案する。
提案手法は, 評価された画像の品質に応じて, 自動的にエンハンスメントを終了するか, 継続するかを決定することができる。
論文 参考訳(メタデータ) (2020-06-30T07:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。