Model-based Offline Imitation Learning with Non-expert Data
- URL: http://arxiv.org/abs/2206.05521v1
- Date: Sat, 11 Jun 2022 13:08:08 GMT
- Title: Model-based Offline Imitation Learning with Non-expert Data
- Authors: Jeongwon Park, Lin Yang
- Abstract summary: We propose a scalable model-based offline imitation learning algorithmic framework that leverages datasets collected by both suboptimal and optimal policies.
We show that the proposed method textitalways outperforms Behavioral Cloning in the low data regime on simulated continuous control domains.
- Score: 7.615595533111191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although Behavioral Cloning (BC) in theory suffers compounding errors, its
scalability and simplicity still makes it an attractive imitation learning
algorithm. In contrast, imitation approaches with adversarial training
typically does not share the same problem, but necessitates interactions with
the environment. Meanwhile, most imitation learning methods only utilises
optimal datasets, which could be significantly more expensive to obtain than
its suboptimal counterpart. A question that arises is, can we utilise the
suboptimal dataset in a principled manner, which otherwise would have been
idle? We propose a scalable model-based offline imitation learning algorithmic
framework that leverages datasets collected by both suboptimal and optimal
policies, and show that its worst case suboptimality becomes linear in the time
horizon with respect to the expert samples. We empirically validate our
theoretical results and show that the proposed method \textit{always}
outperforms BC in the low data regime on simulated continuous control domains
Related papers
- Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
We propose a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models.
arXiv Detail & Related papers (2023-08-21T07:58:15Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.