Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning
- URL: http://arxiv.org/abs/2410.07163v3
- Date: Fri, 07 Feb 2025 18:34:28 GMT
- Title: Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning
- Authors: Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, Sijia Liu,
- Abstract summary: This work studies the problem of large language model (LLM) unlearning, aiming to remove unwanted data influences.
Despite the increasing demand for unlearning, a technically-grounded optimization framework is lacking.
We propose a simple yet effective unlearning optimization framework, called SimNPO, showing that simplicity' in removing the reliance on a reference model benefits unlearning.
- Score: 27.991291785091736
- License:
- Abstract: This work studies the problem of large language model (LLM) unlearning, aiming to remove unwanted data influences (e.g., copyrighted or harmful content) while preserving model utility. Despite the increasing demand for unlearning, a technically-grounded optimization framework is lacking. Gradient ascent (GA)-type methods, though widely used, are suboptimal as they reverse the learning process without controlling optimization divergence (i.e., deviation from the pre-trained state), leading to risks of over-forgetting and potential model collapse. Negative preference optimization (NPO) has been proposed to address this issue and is considered one of the state-of-the-art LLM unlearning approaches. In this work, we revisit NPO and identify another critical issue: reference model bias. This bias arises from using the reference model (i.e., the model prior to unlearning) to evaluate the unlearning success, which can compromise NPO's effectiveness. Specifically, it leads to (a) uneven allocation of optimization power across forget data with varying difficulty levels and (b) ineffective gradient weight smoothing during the early stages of unlearning optimization. To overcome these challenges, we propose a simple yet effective unlearning optimization framework, called SimNPO, showing that `simplicity' in removing the reliance on a reference model (through the lens of simple preference optimization) benefits unlearning. We provide deeper insights into SimNPO's advantages through an analysis based on mixtures of Markov chains. Extensive experiments further validate SimNPO's efficacy on benchmarks like TOFU and MUSE, as well as its robustness against relearning attacks. Codes are available at https://github.com/OPTML-Group/Unlearn-Simple.
Related papers
- Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.
Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models [2.0962367975513496]
Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model.
Existing unlearning methods rely solely on negative feedback to suppress responses related to the forget set.
We propose a novel approach called Alternate Preference Optimization (AltPO), which combines negative feedback with in-domain positive feedback on the forget set.
arXiv Detail & Related papers (2024-09-20T13:05:07Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning [28.059563581973432]
Large Language Models (LLMs) often have sensitive, private, or copyrighted data during pre-training.
LLMs unlearning aims to eliminate the influence of undesirable data from the pre-trained model.
We propose Negative Preference Optimization (NPO) as a simple alignment-inspired method that could efficiently unlearn a target dataset.
arXiv Detail & Related papers (2024-04-08T21:05:42Z) - Model-based Offline Imitation Learning with Non-expert Data [7.615595533111191]
We propose a scalable model-based offline imitation learning algorithmic framework that leverages datasets collected by both suboptimal and optimal policies.
We show that the proposed method textitalways outperforms Behavioral Cloning in the low data regime on simulated continuous control domains.
arXiv Detail & Related papers (2022-06-11T13:08:08Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.