Symbolic Regression for Space Applications: Differentiable Cartesian
Genetic Programming Powered by Multi-objective Memetic Algorithms
- URL: http://arxiv.org/abs/2206.06213v1
- Date: Mon, 13 Jun 2022 14:44:15 GMT
- Title: Symbolic Regression for Space Applications: Differentiable Cartesian
Genetic Programming Powered by Multi-objective Memetic Algorithms
- Authors: Marcus M\"artens and Dario Izzo
- Abstract summary: We propose a new multi-objective memetic algorithm that exploits a differentiable Cartesian Genetic Programming encoding to learn constants during evolutionary loops.
We show that this approach is competitive or outperforms machine learned black box regression models or hand-engineered fits for two applications from space: the Mars express thermal power estimation and the determination of the age of stars by gyrochronology.
- Score: 10.191757341020216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable regression models are important for many application domains,
as they allow experts to understand relations between variables from sparse
data. Symbolic regression addresses this issue by searching the space of all
possible free form equations that can be constructed from elementary algebraic
functions. While explicit mathematical functions can be rediscovered this way,
the determination of unknown numerical constants during search has been an
often neglected issue. We propose a new multi-objective memetic algorithm that
exploits a differentiable Cartesian Genetic Programming encoding to learn
constants during evolutionary loops. We show that this approach is competitive
or outperforms machine learned black box regression models or hand-engineered
fits for two applications from space: the Mars express thermal power estimation
and the determination of the age of stars by gyrochronology.
Related papers
- An evolutionary approach for discovering non-Gaussian stochastic dynamical systems based on nonlocal Kramers-Moyal formulas [19.588387760309484]
This research endeavors to develop an evolutionary symbol sparse regression (ESSR) approach to extract non-Gaussian dynamical systems from sample path data.
The efficacy and capabilities of this approach are showcased through its application to several illustrative models.
arXiv Detail & Related papers (2024-09-29T03:35:01Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Discovering interpretable elastoplasticity models via the neural
polynomial method enabled symbolic regressions [0.0]
Conventional neural network elastoplasticity models are often perceived as lacking interpretability.
This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts.
arXiv Detail & Related papers (2023-07-24T22:22:32Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
We show how flexible non-linear solutions will not always improve upon manually adding transforms and interactions between variables to linear regression models.
We discuss how to recognize this before constructing a data-driven model and how such analysis can help us move to intrinsically interpretable regression models.
arXiv Detail & Related papers (2022-11-21T17:48:44Z) - Feature Engineering with Regularity Structures [4.082216579462797]
We investigate the use of models from the theory of regularity structures as features in machine learning tasks.
We provide a flexible definition of a model feature vector associated to a space-time signal, along with two algorithms which illustrate ways in which these features can be combined with linear regression.
We apply these algorithms in several numerical experiments designed to learn solutions to PDEs with a given forcing and boundary data.
arXiv Detail & Related papers (2021-08-12T17:53:47Z) - Expressivity of Parameterized and Data-driven Representations in Quality
Diversity Search [111.06379262544911]
We compare the output diversity of a quality diversity evolutionary search performed in two different search spaces.
A learned model is better at interpolating between known data points than at extrapolating or expanding towards unseen examples.
arXiv Detail & Related papers (2021-05-10T10:27:43Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Hyperbolic Manifold Regression [33.40757136529844]
We consider the problem of performing manifold-valued regression onto an hyperbolic space as an intermediate component for a number of relevant machine learning applications.
We propose a novel perspective on two challenging tasks: 1) hierarchical classification via label embeddings and 2) taxonomy extension of hyperbolic representations.
Our experiments show that the strategy of leveraging the hyperbolic geometry is promising.
arXiv Detail & Related papers (2020-05-28T10:16:30Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.