論文の概要: Evaluating Graph Generative Models with Contrastively Learned Features
- arxiv url: http://arxiv.org/abs/2206.06234v1
- Date: Mon, 13 Jun 2022 15:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 14:27:34.449984
- Title: Evaluating Graph Generative Models with Contrastively Learned Features
- Title(参考訳): 比較学習特徴を用いたグラフ生成モデルの評価
- Authors: Hamed Shirzad and Kaveh Hassani and Danica J. Sutherland
- Abstract要約: グラフサブストラクチャーネットワーク(GSN)は,グラフデータセット間の距離を区別する上で優れていることを示す。
我々は、ランダムなGNNではなく、対照的に訓練されたGNNの表現を使うことを提案し、その結果、より信頼性の高い評価指標が得られたことを示す。
- 参考スコア(独自算出の注目度): 9.603362400275868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A wide range of models have been proposed for Graph Generative Models,
necessitating effective methods to evaluate their quality. So far, most
techniques use either traditional metrics based on subgraph counting, or the
representations of randomly initialized Graph Neural Networks (GNNs). We
propose using representations from contrastively trained GNNs, rather than
random GNNs, and show this gives more reliable evaluation metrics. Neither
traditional approaches nor GNN-based approaches dominate the other, however: we
give examples of graphs that each approach is unable to distinguish. We
demonstrate that Graph Substructure Networks (GSNs), which in a way combine
both approaches, are better at distinguishing the distances between graph
datasets.
- Abstract(参考訳): グラフ生成モデルには様々なモデルが提案されており、その品質を評価するのに効果的な方法が必要となる。
今のところ、ほとんどのテクニックは、サブグラフカウントに基づく伝統的なメトリクスまたはランダムに初期化されたグラフニューラルネットワーク(GNN)の表現を使用する。
我々は、ランダムなGNNではなく、対照的に訓練されたGNNの表現を使うことを提案する。
しかし、従来のアプローチもGNNベースのアプローチもどちらにも支配的ではなく、それぞれのアプローチが区別できないグラフの例を挙げる。
グラフサブストラクチャーネットワーク(GSN)は、両方のアプローチを組み合わせることで、グラフデータセット間の距離を区別するのがより優れていることを実証する。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
グラフニューラルネットワークは、隣人からの情報を集約することでノードを表現することを学ぶ。
いくつかの既存手法では、ノードの小さなサブセットをサンプリングし、GNNをもっと大きなグラフにスケールすることで、この問題に対処している。
本稿では,GNNのトレーニングに不可欠なノードの集合を識別する適応サンプリング手法であるGRAPESを紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:08:47Z) - GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators [0.6816499294108261]
本研究では,グラフ不変量の分布に関するカーネルベースのメトリクスと,グラフ埋め込み空間における多様体ベースのメトリクスとカーネルベースのメトリクスについて検討する。
グラフの2つのよく知られた生成モデルであるGraphRNNとGRANを比較し、ノード順序の影響を明らかにする。
論文 参考訳(メタデータ) (2023-07-13T12:07:39Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
入力グラフ内のノード表現とエッジ方向認識の様々な組み合わせについて検討する。
そこで本研究では,A2DUGを簡易かつ包括的に分類する手法を提案する。
我々は、A2DUGが様々なデータセットで安定して動作し、最先端の手法と比較して11.29まで精度が向上することを示した。
論文 参考訳(メタデータ) (2023-06-14T06:24:58Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。