論文の概要: Analysis of Randomization Effects on Sim2Real Transfer in Reinforcement
Learning for Robotic Manipulation Tasks
- arxiv url: http://arxiv.org/abs/2206.06282v1
- Date: Mon, 13 Jun 2022 16:12:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 17:48:50.872975
- Title: Analysis of Randomization Effects on Sim2Real Transfer in Reinforcement
Learning for Robotic Manipulation Tasks
- Title(参考訳): ロボットマニピュレーションタスクの強化学習におけるSim2Real転送のランダム化効果の解析
- Authors: Josip Josifovski, Mohammadhossein Malmir, Noah Klarmann, Bare Luka
\v{Z}agar, Nicol\'as Navarro-Guerrero and Alois Knoll
- Abstract要約: 4つのランダム化戦略と3つのランダム化パラメータをシミュレーションと実ロボットで比較する。
以上の結果から,Sim2Real転送においてよりランダム化が有効であることが示唆された。
- 参考スコア(独自算出の注目度): 2.018504891256636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomization is currently a widely used approach in Sim2Real transfer for
data-driven learning algorithms in robotics. Still, most Sim2Real studies
report results for a specific randomization technique and often on a highly
customized robotic system, making it difficult to evaluate different
randomization approaches systematically. To address this problem, we define an
easy-to-reproduce experimental setup for a robotic reach-and-balance
manipulator task, which can serve as a benchmark for comparison. We compare
four randomization strategies with three randomized parameters both in
simulation and on a real robot. Our results show that more randomization helps
in Sim2Real transfer, yet it can also harm the ability of the algorithm to find
a good policy in simulation. Fully randomized simulations and fine-tuning show
differentiated results and translate better to the real robot than the other
approaches tested.
- Abstract(参考訳): ランダム化は現在、ロボット工学におけるデータ駆動学習アルゴリズムのSim2Real転送において広く使われているアプローチである。
それでもほとんどのsim2real研究は、特定のランダム化手法と高度にカスタマイズされたロボットシステムの結果を報告しており、異なるランダム化アプローチを体系的に評価することは困難である。
この問題に対処するために、ロボットリーチ・アンド・バランスマニピュレータタスクの再現容易な実験セットアップを定義し、比較のためのベンチマークとして機能する。
4つのランダム化戦略と3つのランダム化パラメータをシミュレーションと実ロボットで比較する。
その結果,よりランダム化がsim2実数転送の助けとなるが,シミュレーションにおける適切なポリシーを見つけるアルゴリズムの能力を損なう可能性があることがわかった。
完全にランダム化されたシミュレーションと微調整は、異なる結果を示し、テストされた他のアプローチよりも実際のロボットに翻訳する。
関連論文リスト
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
本稿では,データ効率の向上に着目した新しいブラックボックスポリシー探索アルゴリズムを提案する。
このアルゴリズムはロボット上で直接学習し、シミュレーションを追加の情報源として扱い、学習プロセスを高速化する。
ロボットマニピュレータ上でのタスク学習の高速化と成功を,不完全なシミュレータの助けを借りて示す。
論文 参考訳(メタデータ) (2024-11-21T15:52:23Z) - EAGERx: Graph-Based Framework for Sim2real Robot Learning [9.145895178276822]
Sim2realは、シミュレーションから現実世界への学習制御ポリシーの移行であり、ロボット工学への関心が高まりつつある分野である。
EAGERxは,実際のロボット学習とシミュレーションロボット学習の両方に統一されたソフトウェアパイプラインを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-05T08:01:19Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
微分可能シミュレーションは、高速収束と安定した訓練を約束する。
本研究はこれらの課題を克服するための新しい微分可能シミュレーションフレームワークを提案する。
我々のフレームワークは並列化なしで数分で四足歩行を学習できる。
論文 参考訳(メタデータ) (2024-03-21T22:18:59Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
シミュレーションにおけるビジュモータポリシーの学習は、現実世界よりも安全で安価である。
しかし、シミュレーションデータと実データとの相違により、シミュレータ訓練されたポリシーは実際のロボットに転送されると失敗することが多い。
視覚的なsim-to-real領域ギャップを埋める一般的なアプローチは、ドメインランダム化(DR)である。
論文 参考訳(メタデータ) (2023-07-28T05:47:24Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
ディープラーニングがロボティクス研究のパラダイムシフトを引き起こし、大量のデータを必要とする方法が好まれている。
最先端のアプローチは、データ生成が高速かつ安価であるシミュレーションで学ぶ。
本稿では,ランダム化シミュレーションから学習する手法である「領域ランダム化」に焦点をあてる。
論文 参考訳(メタデータ) (2021-11-01T13:55:41Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。
ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。
実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:55Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。