Tunnelling of a composite particle in presence of a magnetic field
- URL: http://arxiv.org/abs/2206.06698v2
- Date: Tue, 30 Jul 2024 15:08:37 GMT
- Title: Tunnelling of a composite particle in presence of a magnetic field
- Authors: Bernard Faulend, Jan Dragašević,
- Abstract summary: We present a model of composite particle tunnelling through a rectangular potential barrier in presence of magnetic field.
Some qualitative features of tunnelling with no magnetic interaction are retained, but some new ones are also observed.
For some values of relevant parameters we also observe significant increase of tunnelling probability for low energies in the single particle case.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simple model of composite particle tunnelling through a rectangular potential barrier in presence of magnetic field. The exact numerical solution of the problem is provided and the applicability to real physical situations is discussed. Some qualitative features of tunnelling with no magnetic interaction are retained, but some new ones are also observed. The resonance peaks in transmission spectrum generally do not reach $100\%$ transmission probability when the magnetic field is turned on. We observe splitting and in some cases widening of transmission probability peaks. When the width $b$ of area with magnetic field is large, we observe oscillations of spin-flip probability with energy and $b$ which are caused by Larmor precession of spin about the vector of magnetic field. For some values of relevant parameters we also observe significant increase of tunnelling probability for low energies in the single particle case.
Related papers
- Magnetic Field Detection Using a Two-Qubit System Under Noisy Heisenberg Interaction [2.7855886538423182]
We propose a method to design a magnetic field detector using a noisy two-qubit system.
We find that the magnetic field does not significantly influence the decoherence process, but it introduces a distinct oscillation in the return probability over time.
These results point towards the feasibility of realizing a practical quantum-based magnetic field detector.
arXiv Detail & Related papers (2024-10-30T06:13:15Z) - Scanning spin probe based on magnonic vortex quantum cavities [0.0]
We propose the realization of a nanoscale scanning electron paramagnetic resonance sensor using a vortex core in a thin-film disc.
The vortex core can be displaced by using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution.
Vortex nanocavities could also attain strong coupling to individual spin molecular qubits, with potential applications to mediate qubit-qubit interactions.
arXiv Detail & Related papers (2024-01-12T12:53:49Z) - Model for 1/f Flux noise in Superconducting Aluminum Devices: Impact of
External Magnetic Fields [0.0]
Superconducting quantum interference devices (SQUIDs) and related circuits made of aluminum display $1/omega$ flux noise.
An external magnetic field in the $10-100$G range changed the noise to a single Lorentzian peaked at $omega=0$.
The model shows that application of an external magnetic field can be used to reduce the impact of flux noise in qubits.
arXiv Detail & Related papers (2023-02-23T20:26:56Z) - New Class of Landau Levels and Hall Phases in a 2D Electron Gas Subject
to an Inhomogeneous Magnetic Field: An Analytic Solution [0.0]
Solution provides access to many properties of a two-dimensional, non-interacting, electron gas in the thermodynamic limit.
Radially distorted Landau levels can be identified as well as magnetic field induced density and current oscillations close to the magnetic impurity.
arXiv Detail & Related papers (2022-01-13T16:52:02Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Relativistic Landau quantization in non-uniform magnetic field and its
applications to white dwarfs and quantum information [0.0]
We find that the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out when the field is variable.
Also the varying magnetic field splits Landau levels of electrons with zero angular momentum from positive angular momentum, unlike the constant field which only can split the levels between positive and negative angular momenta.
arXiv Detail & Related papers (2021-10-18T18:00:06Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Single-qubit remote manipulation by magnetic solitons [62.997667081978825]
Magnetic solitons can constitute a means for manipulating qubits from a distance.
When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations.
arXiv Detail & Related papers (2021-04-07T08:28:49Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.