Searching Axion-like Dark Matter by Amplifying Weak Magnetic Field with Quantum Zeno effect
- URL: http://arxiv.org/abs/2502.13393v1
- Date: Wed, 19 Feb 2025 03:09:11 GMT
- Title: Searching Axion-like Dark Matter by Amplifying Weak Magnetic Field with Quantum Zeno effect
- Authors: J. Dong, W. T. He, S. D. Zou, D. L. Zhou, Q. Ai,
- Abstract summary: We theoretically propose amplifying the magnetic-field signal by using nuclear spins by the quantum Zeno effect (QZE)
Our findings may provide valuable guidance for the design of experiments on establishing new constraints of dark matter and exotic interactions.
- Score: 0.0
- License:
- Abstract: The enhancement of weak signals and the detection of hypothetical particles, facilitated by quantum amplification, are crucial for advancing fundamental physics and its practical applications. Recently, it was experimentally observed that magnetic field can be amplified by using nuclear spins under Markovian noise, [H. Su, et al., Phys. Rev. Lett. 133, 191801 (2024)]. Here, we theoretically propose amplifying the magnetic-field signal by using nuclear spins by the quantum Zeno effect (QZE). Under identical conditions, we demonstrate that compared to the Markovian case the amplification of the weak magnetic field can be enhanced by a factor about $e^{1/2}$ under a Gaussian noise. Moreover, through numerical simulations we determine the optimal experimental parameters for amplification conditions. This work shows that the combination of the QZE and spin amplification effectively enhances the amplification of the weak magnetic field. Our findings may provide valuable guidance for the design of experiments on establishing new constraints of dark matter and exotic interactions in the near future.
Related papers
- Magnetic Field Detection Using a Two-Qubit System Under Noisy Heisenberg Interaction [2.7855886538423182]
We propose a method to design a magnetic field detector using a noisy two-qubit system.
We find that the magnetic field does not significantly influence the decoherence process, but it introduces a distinct oscillation in the return probability over time.
These results point towards the feasibility of realizing a practical quantum-based magnetic field detector.
arXiv Detail & Related papers (2024-10-30T06:13:15Z) - Cooperative Spin Amplification [4.561604895218612]
We demonstrate a new signal amplification using cooperative 129Xe nuclear spins embedded within a feedback circuit.
We realize an ultrahigh magnetic sensitivity of 4.0 fT/Hz$1/2$ that surpasses the photon-shot noise.
Our findings extend the physics of quantum amplification to cooperative spin systems and can be generalized to a wide variety of existing sensors.
arXiv Detail & Related papers (2023-09-20T14:55:34Z) - Doppler-Enhanced Quantum Magnetometry with thermal Rydberg atoms [2.3488056916440856]
We show that one can harness Doppler shifts in a copropagating arrangement to produce an enhanced response to a magnetic field.
Our results pave the way to using quantum effects for magnetometry in readily deployable room-temperature platforms.
arXiv Detail & Related papers (2023-08-09T18:58:20Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Synthetic gauge potentials for the dark state polaritons in atomic media [0.0]
We propose an optical scheme to generate effective gauge potentials for stationary-light polaritons.
Our scheme paves a novel way towards the investigation of the bosonic analogue of the fractional quantum Hall effect by electromagnetically induced transparency.
arXiv Detail & Related papers (2021-04-22T13:06:22Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.