Learning Dense Features for Point Cloud Registration Using Graph
Attention Network
- URL: http://arxiv.org/abs/2206.06731v1
- Date: Tue, 14 Jun 2022 10:28:57 GMT
- Title: Learning Dense Features for Point Cloud Registration Using Graph
Attention Network
- Authors: Lai Dang Quoc Vinh, Sarvar Hussain Nengroo and Hojun Jin
- Abstract summary: We introduce a framework that efficiently and economically extracts dense features using graph attention network for point cloud matching and registration.
The detector of the DFGAT is responsible for finding highly reliable key points in large raw data sets.
The graph attention network uses the attention mechanism that enriches the relationships between point clouds.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Point cloud registration is a fundamental task in many applications such as
localization, mapping, tracking, and reconstruction. The successful
registration relies on extracting robust and discriminative geometric features.
Existing learning-based methods require high computing capacity for processing
a large number of raw points at the same time. Although these approaches
achieve convincing results, they are difficult to apply in real-world
situations due to high computational costs. In this paper, we introduce a
framework that efficiently and economically extracts dense features using graph
attention network for point cloud matching and registration (DFGAT). The
detector of the DFGAT is responsible for finding highly reliable key points in
large raw data sets. The descriptor of the DFGAT takes these key points
combined with their neighbors to extract invariant density features in
preparation for the matching. The graph attention network uses the attention
mechanism that enriches the relationships between point clouds. Finally, we
consider this as an optimal transport problem and use the Sinkhorn algorithm to
find positive and negative matches. We perform thorough tests on the KITTI
dataset and evaluate the effectiveness of this approach. The results show that
this method with the efficiently compact keypoint selection and description can
achieve the best performance matching metrics and reach highest success ratio
of 99.88% registration in comparison with other state-of-the-art approaches.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
We introduce a novel Efficient Point Cloud Registration via Dynamic It framework, DIPR, that makes the neural network interactively focus on overlapping points based on sparser input points.
Our proposed approach achieves superior registration accuracy while significantly reducing computational time and GPU memory consumption compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-05T16:47:46Z) - SEM-GAT: Explainable Semantic Pose Estimation using Learned Graph
Attention [10.883346969896621]
This paper proposes a Graph Neural Network(GNN)-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates.
Semantic and morphological features of the environment serve as key reference points for registration, enabling accurate lidar-based pose estimation.
We test our method on the KITTI odometry dataset, achieving competitive accuracy compared to benchmark methods and a higher track smoothness while relying on significantly fewer network parameters.
arXiv Detail & Related papers (2023-08-07T16:43:46Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
Accurately matching local features between a pair of images is a challenging computer vision task.
Previous studies typically use attention based graph neural networks (GNNs) with fully-connected graphs over keypoints within/across images.
We propose MaKeGNN, a sparse attention-based GNN architecture which bypasses non-repeatable keypoints and leverages matchable ones to guide message passing.
arXiv Detail & Related papers (2023-07-04T02:50:44Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Large-scale Point Cloud Registration Based on Graph Matching
Optimization [30.92028761652611]
We propose a underlineGraph underlineMatching underlineOptimization based underlineNetwork.
The proposed method has been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark.
arXiv Detail & Related papers (2023-02-12T03:29:35Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Fast and Robust Registration of Partially Overlapping Point Clouds [5.073765501263891]
Real-time registration of partially overlapping point clouds has emerging applications in cooperative perception for autonomous vehicles.
Relative translation between point clouds in these applications is higher than in traditional SLAM and odometry applications.
We propose a novel registration method for partially overlapping point clouds where correspondences are learned using an efficient point-wise feature encoder.
arXiv Detail & Related papers (2021-12-18T12:39:05Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z) - StickyPillars: Robust and Efficient Feature Matching on Point Clouds
using Graph Neural Networks [16.940377259203284]
StickyPillars is a fast, accurate and extremely robust deep middle-end 3D feature matching method on point clouds.
We present state-of-art art accuracy results on the registration problem demonstrated on the KITTI dataset.
We integrate our matching system into a LiDAR odometry pipeline yielding most accurate results on the KITTI dataset.
arXiv Detail & Related papers (2020-02-10T17:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.