Natural Language Sentence Generation from API Specifications
- URL: http://arxiv.org/abs/2206.06868v1
- Date: Wed, 1 Jun 2022 15:50:14 GMT
- Title: Natural Language Sentence Generation from API Specifications
- Authors: Siyu Huo, Kushal Mukherjee, Jayachandu Bandlamudi, Vatche Isahagian,
Vinod Muthusamy and Yara Rizk
- Abstract summary: We propose a system to generate sentences to train intent recognition models.
The human-in-the-loop interaction will provide further improvement on the system.
- Score: 5.192671914929481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: APIs are everywhere; they provide access to automation solutions that could
help businesses automate some of their tasks. Unfortunately, they may not be
accessible to the business users who need them but are not equipped with the
necessary technical skills to leverage them. Wrapping these APIs with chatbot
capabilities is one solution to make these automation solutions interactive. In
this work, we propose a system to generate sentences to train intent
recognition models, a crucial component within chatbots to understand natural
language utterances from users. Evaluation of our approach based on deep
learning models showed promising and inspiring results, and the
human-in-the-loop interaction will provide further improvement on the system.
Related papers
- CallNavi: A Study and Challenge on Function Calling Routing and Invocation in Large Language Models [7.443502461016052]
We present a novel dataset designed to assess models on API function selection, parameter generation, and nested API calls.
We also propose an enhanced API routing method that combines general-purpose large language models for API selection with fine-tuned models for parameter generation and some prompt engineering approach.
arXiv Detail & Related papers (2025-01-09T14:12:43Z) - Seq2Seq Model-Based Chatbot with LSTM and Attention Mechanism for Enhanced User Interaction [1.937324318931008]
This work proposes a Sequence-to-Sequence (Seq2Seq) model with an encoder-decoder architecture that incorporates attention mechanisms and Long Short-Term Memory (LSTM) cells.
The proposed Seq2Seq model-based robot is trained, validated, and tested on a dataset specifically for the tourism sector in Draa-Tafilalet, Morocco.
arXiv Detail & Related papers (2024-12-27T23:50:54Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.
First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.
We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Automatically generating decision-support chatbots based on DMN models [0.0]
We propose an approach for the automatic generation of fully functional, ready-to-use decisions-support chatbots based on a DNM decision model.
With the aim of reducing chatbots development time and to allowing non-technical users the possibility of developing chatbots specific to their domain, all necessary phases were implemented in the Demabot tool.
arXiv Detail & Related papers (2024-05-15T18:13:09Z) - Creation Of A ChatBot Based On Natural Language Proccesing For Whatsapp [0.0]
The objective of this study is to develop a chatbots based on natural language processing to improve customer satisfaction and improve the quality of service provided by the company through WhatsApp.
The results of this study will provide a solid foundation for the design and development of effective chatbots for customer service.
arXiv Detail & Related papers (2023-10-10T18:54:15Z) - AI Based Chatbot: An Approach of Utilizing On Customer Service
Assistance [0.0]
The project aims to develop the system that could comply with complex questions and logical output answers.
The ultimate goal is to give high-quality results (answers) based on user input (question)
arXiv Detail & Related papers (2022-06-18T00:59:10Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
Large language models can encode a wealth of semantic knowledge about the world.
Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language.
We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions.
arXiv Detail & Related papers (2022-04-04T17:57:11Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
We use Generative Conversational Networks to automatically generate data and train social conversational agents.
We evaluate our approach on TopicalChat with automatic metrics and human evaluators, showing that with 10% of seed data it performs close to the baseline that uses 100% of the data.
arXiv Detail & Related papers (2021-10-15T21:46:39Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
We introduce a neural semantic parsing system that learns new high-level abstractions through decomposition.
Users interactively teach the system by breaking down high-level utterances describing novel behavior into low-level steps.
arXiv Detail & Related papers (2020-10-11T08:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.