Creation Of A ChatBot Based On Natural Language Proccesing For Whatsapp
- URL: http://arxiv.org/abs/2310.10675v1
- Date: Tue, 10 Oct 2023 18:54:15 GMT
- Title: Creation Of A ChatBot Based On Natural Language Proccesing For Whatsapp
- Authors: Valderrama Jonatan, Aguilar-Alonso Igor
- Abstract summary: The objective of this study is to develop a chatbots based on natural language processing to improve customer satisfaction and improve the quality of service provided by the company through WhatsApp.
The results of this study will provide a solid foundation for the design and development of effective chatbots for customer service.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of digital transformation, customer service is of paramount
importance to the success of organizations, and to meet the growing demand for
immediate responses and personalized assistance 24 hours a day, chatbots have
become a promising tool to solve these problems. Currently, there are many
companies that need to provide these solutions to their customers, which
motivates us to study this problem and offer a suitable solution. The objective
of this study is to develop a chatbot based on natural language processing to
improve customer satisfaction and improve the quality of service provided by
the company through WhatsApp. The solution focuses on creating a chatbot that
efficiently and effectively handles user queries. A literature review related
to existing chatbots has been conducted, analyzing methodological approaches,
artificial intelligence techniques and quality attributes used in the
implementation of chatbots. The results found highlight that chatbots based on
natural language processing enable fast and accurate responses, which improves
the efficiency of customer service, as chatbots contribute to customer
satisfaction by providing accurate answers and quick solutions to their queries
at any time. Some authors point out that artificial intelligence techniques,
such as machine learning, improve the learning and adaptability of chatbots as
user interactions occur, so a good choice of appropriate natural language
understanding technologies is essential for optimal chatbot performance. The
results of this study will provide a solid foundation for the design and
development of effective chatbots for customer service, ensuring a satisfactory
user experience and thus meeting the needs of the organization.
Related papers
- Multi-Purpose NLP Chatbot : Design, Methodology & Conclusion [0.0]
This research paper provides a thorough analysis of the chatbots technology environment as it exists today.
It provides a very flexible system that makes use of reinforcement learning strategies to improve user interactions and conversational experiences.
The complexity of chatbots technology development is also explored in this study, along with the causes that have propelled these developments and their far-reaching effects on a range of sectors.
arXiv Detail & Related papers (2023-10-13T09:47:24Z) - Evaluating Chatbots to Promote Users' Trust -- Practices and Open
Problems [11.427175278545517]
This paper reviews current practices for testing chatbots.
It identifies gaps as open problems in pursuit of user trust.
It outlines a path forward to mitigate issues of trust related to service or product performance, user satisfaction and long-term unintended consequences for society.
arXiv Detail & Related papers (2023-09-09T22:40:30Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
Recent advances in language learning models with zero-shot learning capabilities, such as ChatGPT, suggest a new possibility for developing educational chatbots.
We present a case study with a simple system that enables mixed-turn chatbots interactions.
We examine ChatGPT's ability to pursue multiple interconnected learning objectives, adapt the educational activity to users' characteristics, such as culture, age, and level of education, and its ability to use diverse educational strategies and conversational styles.
arXiv Detail & Related papers (2023-06-18T22:23:18Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
ChatGPT, developed by OpenAI, has been trained using massive amounts of data and simulates human conversation.
It has garnered significant attention due to its ability to effectively answer a broad range of human inquiries.
However, a comprehensive analysis of ChatGPT's failures is lacking, which is the focus of this study.
arXiv Detail & Related papers (2023-02-06T04:21:59Z) - AI Based Chatbot: An Approach of Utilizing On Customer Service
Assistance [0.0]
The project aims to develop the system that could comply with complex questions and logical output answers.
The ultimate goal is to give high-quality results (answers) based on user input (question)
arXiv Detail & Related papers (2022-06-18T00:59:10Z) - A Literature Survey of Recent Advances in Chatbots [0.0]
We review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used.
We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
arXiv Detail & Related papers (2022-01-17T23:08:58Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second.
We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence.
arXiv Detail & Related papers (2021-12-31T22:26:41Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
Social language used by human agents is associated with greater users' responsiveness and task completion.
The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element.
Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users' issues in a more socially appropriate way.
arXiv Detail & Related papers (2020-12-29T08:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.