論文の概要: Neural interval-censored survival regression with feature selection
- arxiv url: http://arxiv.org/abs/2206.06885v3
- Date: Thu, 22 Aug 2024 16:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 20:17:08.601787
- Title: Neural interval-censored survival regression with feature selection
- Title(参考訳): 特徴選択によるニューラルインターバル感覚生存の回帰
- Authors: Carlos García Meixide, Marcos Matabuena, Louis Abraham, Michael R. Kosorok,
- Abstract要約: 加速故障時間(AFT)モデルに根ざした区間チャージ回帰タスクに適した新しい予測フレームワークを提案する。
この結果は,特に非線形関係を特徴とするシナリオにおいて,従来のAFTアルゴリズムよりも優れていた。
- 参考スコア(独自算出の注目度): 1.933856957193398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Survival analysis is a fundamental area of focus in biomedical research, particularly in the context of personalized medicine. This prominence is due to the increasing prevalence of large and high-dimensional datasets, such as omics and medical image data. However, the literature on non-linear regression algorithms and variable selection techniques for interval-censoring is either limited or non-existent, particularly in the context of neural networks. Our objective is to introduce a novel predictive framework tailored for interval-censored regression tasks, rooted in Accelerated Failure Time (AFT) models. Our strategy comprises two key components: i) a variable selection phase leveraging recent advances on sparse neural network architectures, ii) a regression model targeting prediction of the interval-censored response. To assess the performance of our novel algorithm, we conducted a comprehensive evaluation through both numerical experiments and real-world applications that encompass scenarios related to diabetes and physical activity. Our results outperform traditional AFT algorithms, particularly in scenarios featuring non-linear relationships.
- Abstract(参考訳): 生存分析は、特にパーソナライズされた医療の文脈において、生物医学研究における基本的な分野である。
この優位性は、オミクスや医用画像データなど、大規模で高次元のデータセットの普及によるものである。
しかしながら、非線形回帰アルゴリズムと区間知覚のための変数選択技術に関する文献は、特にニューラルネットワークの文脈において、限定的または存在しない。
我々の目標は、加速故障時間(AFT)モデルに根ざした、インターバルセンセーテッド回帰タスクに適した、新しい予測フレームワークを導入することである。
私たちの戦略は2つの重要な要素から構成されます。
一 スパースニューラルネットワークアーキテクチャの最近の進歩を生かした可変選択相
二 間隔感応答の予測を目的とした回帰モデル
提案アルゴリズムの性能を評価するため,糖尿病や身体活動に関連するシナリオを含む数値実験と実世界のアプリケーションによる総合的な評価を行った。
この結果は,特に非線形関係を特徴とするシナリオにおいて,従来のAFTアルゴリズムよりも優れていた。
関連論文リスト
- Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
生存分析は、経済学、工学、医療など様々な分野において重要な役割を担っている。
本稿では,従来の分布仮定を使わずに,高品質な単文PDFを作成できる新しい生存回帰手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T04:29:59Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
本研究では,DeepBayes推定器を提案する。
ディープリカレントニューラルネットワークアーキテクチャはオフラインでトレーニングでき、推論中にかなりの時間を節約できる。
提案手法の異なる実例モデルへの適用性を実証し, 最先端手法との詳細な比較を行う。
論文 参考訳(メタデータ) (2022-05-04T18:12:17Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Robustly Pre-trained Neural Model for Direct Temporal Relation
Extraction [10.832917897850361]
BERT (Bidirectional Representation using Transformer) のいくつかの変種について検討した。
2012 i2b2 時間関係課題データセットのセマンティックな部分集合である直接時間関係データセットを用いて,これらの手法の評価を行った。
結果: 10倍のコーパスを含む事前学習戦略を取り入れたRoBERTaは,F値の絶対スコア(1.00スケール)を0.0864改善し,SVMモデルで達成した従来の最先端性能と比較して誤差率を24%低減した。
論文 参考訳(メタデータ) (2020-04-13T22:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。