論文の概要: Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2405.14504v1
- Date: Thu, 23 May 2024 12:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:15:02.589231
- Title: Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks
- Title(参考訳): 物理誘導型および周波数強調型リカレントニューラルネットワークを用いた時空間予測の高速化
- Authors: Xuanle Zhao, Yue Sun, Tielin Zhang, Bo Xu,
- Abstract要約: 本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
- 参考スコア(独自算出の注目度): 17.91230192726962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governing partial differential equations (PDEs), which have shown promising results in spatiotemporal prediction tasks. However, previous approaches only restrict neural network architectures or loss functions to acquire physical or PDE features, which decreases the representative capacity of a neural network. Meanwhile, the updating process of the physical state cannot be effectively estimated. To solve the above mentioned problems, this paper proposes a physical-guided neural network, which utilizes the frequency-enhanced Fourier module and moment loss to strengthen the model's ability to estimate the spatiotemporal dynamics. Furthermore, we propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely. We evaluate our model on both spatiotemporal and video prediction tasks. The experimental results show that our model outperforms state-of-the-art methods and performs best in several datasets, with a much smaller parameter count.
- Abstract(参考訳): 時空間予測は自然問題の解決やビデオフレームの処理、特に天気予報や人間の行動認識において重要な役割を果たす。
近年の進歩は、時空間予測タスクにおいて有望な結果を示す未知の制御偏微分方程式(PDE)を推定するために、事前の物理知識をディープラーニングフレームワークに組み込もうとしている。
しかし、従来のアプローチでは、物理またはPDE特徴を取得するためにニューラルネットワークアーキテクチャや損失関数のみを制限していたため、ニューラルネットワークの代表能力は低下した。
一方、物理的状態の更新過程を効果的に推定することはできない。
上記の問題を解決するために,周波数増幅フーリエモジュールとモーメント損失を用いた物理誘導型ニューラルネットワークを提案し,時空間力学を推定するモデルの能力を強化する。
さらに,物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
本研究では,時空間および映像の予測タスクにおけるモデルの評価を行った。
実験結果から,本モデルは最先端の手法より優れ,パラメータ数もはるかに小さく,複数のデータセットで最高の性能を示すことがわかった。
関連論文リスト
- Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
二周期領域上で定義される物理問題であるTaylor-Green vortexは、標準物理インフォームドニューラルネットワークと我々のモデルの両方の性能を評価するベンチマークとして使用される。
その結果,標準物理インフォームドニューラルネットワークは解の正確な予測に失敗し,初期条件を時間的に返却するだけでなく,物理の時間的変化をうまく捉えていることがわかった。
論文 参考訳(メタデータ) (2024-10-05T10:32:51Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
現在利用可能なニューラルネットワークベースのモデリングアプローチは、時間と空間でランダムに収集されたデータに直面したときに不足する。
そこで我々は,このようなランダムなサンプルデータを効果的に処理する新しい手法を開発した。
我々のモデルは、システムの力学と将来の観測のタイミングと位置の両方を予測するために、償却変分推論、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現といった技術を統合する。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Spatio-temporal Attention-based Hidden Physics-informed Neural Network for Remaining Useful Life Prediction [1.8554335256160261]
STA-HPINN(spatatio-temporal Attention-based Hidden Physics-informed Neural Network)を導入する。
隠れた物理インフォームドニューラルネットワークを用いて、RULの進化を管理する次元物理機構を捉える。
このアプローチはベンチマークデータセットで検証され、最先端のメソッドと比較して、例外的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-20T21:10:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
アクティブ推論フレームワーク(英: active inference framework、AIF)は、現代の神経科学を基盤とした、有望な新しい計算フレームワークである。
本研究では,ヒトの視覚行動指導において,AIFが期待する役割を捉える能力をテストする。
本稿では,多次元世界状態から自由エネルギーの一次元分布にマッピングする先行関数の新たな定式化について述べる。
論文 参考訳(メタデータ) (2022-11-16T20:00:38Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Dynamic Time Warping as a New Evaluation for Dst Forecast with Machine
Learning [0.0]
ニューラルネットワークをトレーニングして、発生時刻の暴風雨時指数を1時間から6時間まで予測する。
相関係数とRMSEによるモデルの結果の検査により,最新の論文に匹敵する性能を示した。
2つの時系列が互いに時間的にずれているかどうかを測定するために,新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T15:14:13Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。