論文の概要: OSN Dashboard Tool For Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2206.06935v1
- Date: Tue, 14 Jun 2022 15:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-15 14:38:26.049550
- Title: OSN Dashboard Tool For Sentiment Analysis
- Title(参考訳): 感性分析のためのOSNダッシュボードツール
- Authors: Andreas Kilde Lien, Lars Martin Randem, Hans Petter Fauchald Taralrud,
Maryam Edalati
- Abstract要約: 意見はすべての人間の活動の中心であるため、このタイプのデータに対する洞察を得るために感情分析が適用されている。
主な欠点は、分類と高レベルの可視化のための標準化されたソリューションがないことである。
本研究では,オンラインソーシャルネットワーキング分析のための感情分析ダッシュボードを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The amount of opinionated data on the internet is rapidly increasing. More
and more people are sharing their ideas and opinions in reviews, discussion
forums, microblogs and general social media. As opinions are central in all
human activities, sentiment analysis has been applied to gain insights in this
type of data. There are proposed several approaches for sentiment
classification. The major drawback is the lack of standardized solutions for
classification and high-level visualization. In this study, a sentiment
analyzer dashboard for online social networking analysis is proposed. This, to
enable people gaining insights in topics interesting to them. The tool allows
users to run the desired sentiment analysis algorithm in the dashboard. In
addition to providing several visualization types, the dashboard facilitates
raw data results from the sentiment classification which can be downloaded for
further analysis.
- Abstract(参考訳): インターネット上の意見データの量は急速に増えている。
レビューや議論フォーラム、マイクロブログ、一般的なソーシャルメディアで、アイデアや意見を共有する人が増えています。
すべての人間の活動に意見が集中しているため、このタイプのデータに対する洞察を得るために感情分析が適用されている。
感情分類にはいくつかのアプローチが提案されている。
主な欠点は、分類と高レベルの可視化のための標準化されたソリューションがないことである。
本研究では,オンラインソーシャルネットワーキング分析のための感情分析ダッシュボードを提案する。
これは、人々が興味をそそるトピックについての洞察を得ることを可能にする。
このツールは、ユーザーがダッシュボードで所望の感情分析アルゴリズムを実行することができる。
ダッシュボードは、いくつかの可視化型を提供するのに加えて、さらなる分析のためにダウンロード可能な感情分類から生のデータ結果を簡単に取得できる。
関連論文リスト
- You Shall Know a Tool by the Traces it Leaves: The Predictability of Sentiment Analysis Tools [74.98850427240464]
感情分析ツールが同じデータセットで一致しないことを示す。
感傷的アノテーションに使用される感情ツールは,その結果から予測できることを示す。
論文 参考訳(メタデータ) (2024-10-18T17:27:38Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
感性分析(SA)はテキストマイニングにおける新たな分野である。
これは、異なるソーシャルメディアプラットフォーム上でテキストで表現された意見を計算的に識別し、分類するプロセスである。
論文 参考訳(メタデータ) (2023-11-19T06:29:41Z) - Analyzing Political Figures in Real-Time: Leveraging YouTube Metadata
for Sentiment Analysis [0.0]
YouTubeビデオメタデータのビッグデータを用いた感情分析を行い、様々な政治的人物の世論を分析することができる。
本研究は,YouTubeビデオメタデータを利用した感情分析システムの構築を目的とした。
感情分析モデルはLSTMアルゴリズムを用いて構築され、肯定的な感情と否定的な感情の2種類の感情を生成する。
論文 参考訳(メタデータ) (2023-09-28T08:15:55Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - A Study on Herd Behavior Using Sentiment Analysis in Online Social
Network [1.5673338088641469]
本稿では,オンラインソーシャルネットワーキングサイトからの批判的意見を予測するための多様な戦略の能力について述べる。
ソーシャルメディアはここ数十年で良いメディアとなり、世界中の意見を共有している。
本研究では,ソーシャルメディアコンテンツを用いた感情分析手法の評価を行った。
論文 参考訳(メタデータ) (2021-07-25T05:22:35Z) - Graphing else matters: exploiting aspect opinions and ratings in
explainable graph-based recommendations [66.83527496838937]
本稿では,テキストレビューで表現された評価情報とアスペクトベースの意見を組み合わせたグラフから抽出した埋め込みを活用することを提案する。
次に、AmazonとYelpの6つのドメインのレビューから生成されたグラフに対して、最先端のグラフ埋め込み技術を適用して評価する。
提案手法は,推奨項目について利用者が提示したアスペクトベースの意見を活用した説明を提供することの利点がある。
論文 参考訳(メタデータ) (2021-07-07T13:57:28Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Visual Sentiment Analysis from Disaster Images in Social Media [11.075683976162766]
本稿では,社会的な重要な領域における視覚的感情分析,すなわちソーシャルメディアにおける災害分析に焦点を当てる。
本稿では,災害関連画像に対する深い視覚的感情分析手法を提案し,視覚的感情分析のさまざまな側面について述べる。
提案システムは,様々な利害関係者を支援することで,より生き生きとしたコミュニティに貢献できると考えている。
論文 参考訳(メタデータ) (2020-09-04T11:29:52Z) - Tweets Sentiment Analysis via Word Embeddings and Machine Learning
Techniques [1.345251051985899]
本論文では、感情分類のための特徴選択モデルWord2vecと機械学習アルゴリズムランダムフォレストを用いて、リアルタイムの2019年選挙Twitterデータに対する感情分析を行うことを目的とする。
Word2vecはテキスト中の単語の文脈意味を考慮し、特徴の質を改善し、機械学習と感情分析の精度を向上させる。
論文 参考訳(メタデータ) (2020-07-05T08:10:30Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
本稿では、関連する出版物をレビューし、視覚知覚分析の分野の概要を概観する。
また,3つの視点から一般的な視覚知覚分析システムの設計原理について述べる。
様々なレベルの粒度と、異なる方法でイメージに対する感情に影響を与えるコンポーネントを考慮し、問題の定式化について論じる。
論文 参考訳(メタデータ) (2020-04-24T10:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。