A Projection-Based K-space Transformer Network for Undersampled Radial
MRI Reconstruction with Limited Training Subjects
- URL: http://arxiv.org/abs/2206.07219v1
- Date: Wed, 15 Jun 2022 00:20:22 GMT
- Title: A Projection-Based K-space Transformer Network for Undersampled Radial
MRI Reconstruction with Limited Training Subjects
- Authors: Chang Gao, Shu-Fu Shih, J. Paul Finn, Xiaodong Zhong
- Abstract summary: Non-Cartesian trajectories need to be transformed onto a Cartesian grid in each iteration of the network training.
We propose novel data augmentation methods to generate a large amount of training data from a limited number of subjects.
Experimental results show superior performance of the proposed framework compared to state-of-the-art deep neural networks.
- Score: 1.5708535232255898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of deep learning combined with compressed sensing
enables fast reconstruction of undersampled MR images and has achieved
state-of-the-art performance for Cartesian k-space trajectories. However,
non-Cartesian trajectories such as the radial trajectory need to be transformed
onto a Cartesian grid in each iteration of the network training, slowing down
the training process and posing inconvenience and delay during training.
Multiple iterations of nonuniform Fourier transform in the networks offset the
deep learning advantage of fast inference. Current approaches typically either
work on image-to-image networks or grid the non-Cartesian trajectories before
the network training to avoid the repeated gridding process. However, the
image-to-image networks cannot ensure the k-space data consistency in the
reconstructed images and the pre-processing of non-Cartesian k-space leads to
gridding errors which cannot be compensated by the network training. Inspired
by the Transformer network to handle long-range dependencies in sequence
transduction tasks, we propose to rearrange the radial spokes to sequential
data based on the chronological order of acquisition and use the Transformer to
predict unacquired radial spokes from acquired ones. We propose novel data
augmentation methods to generate a large amount of training data from a limited
number of subjects. The network can be generated to different anatomical
structures. Experimental results show superior performance of the proposed
framework compared to state-of-the-art deep neural networks.
Related papers
- Untrained neural network embedded Fourier phase retrieval from few
measurements [8.914156789222266]
This paper proposes an untrained neural network embedded algorithm to solve FPR with few measurements.
We use a generative network to represent the image to be recovered, which confines the image to the space defined by the network structure.
To reduce the computational cost mainly caused by the parameter updates of the untrained NN, we develop an accelerated algorithm that adaptively trades off between explicit and implicit regularization.
arXiv Detail & Related papers (2023-07-16T16:23:50Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - Convolutional Analysis Operator Learning by End-To-End Training of
Iterative Neural Networks [3.6280929178575994]
We show how convolutional sparsifying filters can be efficiently learned by end-to-end training of iterative neural networks.
We evaluated our approach on a non-Cartesian 2D cardiac cine MRI example and show that the obtained filters are better suitable for the corresponding reconstruction algorithm than the ones obtained by decoupled pre-training.
arXiv Detail & Related papers (2022-03-04T07:32:16Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Patch Based Transformation for Minimum Variance Beamformer Image
Approximation Using Delay and Sum Pipeline [0.0]
In this work, a patch level U-Net based neural network is proposed, where the delay compensated radio frequency (RF) patch for a fixed region in space is transformed through a U-Net architecture.
The proposed approach treats the non-linear transformation of the RF data space that can account for the data driven weight adaptation done by the MVDR approach in the parameters of the network.
arXiv Detail & Related papers (2021-10-19T19:36:59Z) - An End-To-End-Trainable Iterative Network Architecture for Accelerated
Radial Multi-Coil 2D Cine MR Image Reconstruction [4.233498905999929]
We propose a CNN-architecture for image reconstruction of accelerated 2D radial cine MRI with multiple receiver coils.
We investigate the proposed training-strategy and compare our method to other well-known reconstruction techniques with learned and non-learned regularization methods.
arXiv Detail & Related papers (2021-02-01T11:42:04Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z) - Deep Non-Line-of-Sight Reconstruction [18.38481917675749]
In this paper, we employ convolutional feed-forward networks for solving the reconstruction problem efficiently.
We devise a tailored autoencoder architecture, trained end-to-end reconstruction maps transient images directly to a depth map representation.
We demonstrate that our feed-forward network, even though it is trained solely on synthetic data, generalizes to measured data from SPAD sensors and is able to obtain results that are competitive with model-based reconstruction methods.
arXiv Detail & Related papers (2020-01-24T16:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.