論文の概要: Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization
- arxiv url: http://arxiv.org/abs/2305.19775v1
- Date: Wed, 31 May 2023 12:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 16:50:14.107138
- Title: Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization
- Title(参考訳): 多目的金属切削プロセス最適化のための進化的解法適応
- Authors: Leo Francoso Dal Piccol Sotto, Sebastian Mayer, Hemanth Janarthanam,
Alexander Butz, Jochen Garcke
- Abstract要約: 我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
- 参考スコア(独自算出の注目度): 59.45414406974091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing manufacturing process parameters is typically a multi-objective
problem with often contradictory objectives such as production quality and
production time. If production requirements change, process parameters have to
be optimized again. Since optimization usually requires costly simulations
based on, for example, the Finite Element method, it is of great interest to
have means to reduce the number of evaluations needed for optimization. To this
end, we consider optimizing for different production requirements from the
viewpoint of a framework for system flexibility that allows us to study the
ability of an algorithm to transfer solutions from previous optimization tasks,
which also relates to dynamic evolutionary optimization. Based on the extended
Oxley model for orthogonal metal cutting, we introduce a multi-objective
optimization benchmark where different materials define related optimization
tasks, and use it to study the flexibility of NSGA-II, which we extend by two
variants: 1) varying goals, that optimizes solutions for two tasks
simultaneously to obtain in-between source solutions expected to be more
adaptable, and 2) active-inactive genotype, that accommodates different
possibilities that can be activated or deactivated. Results show that adaption
with standard NSGA-II greatly reduces the number of evaluations required for
optimization to a target goal, while the proposed variants further improve the
adaption costs, although further work is needed towards making the methods
advantageous for real applications.
- Abstract(参考訳): 製造プロセスパラメータの最適化は、通常、生産品質や生産時間といった矛盾する目的を持つ多目的の問題である。
運用要件が変わった場合、プロセスパラメータを再度最適化する必要があります。
最適化は通常、例えば有限要素法に基づくコストのかかるシミュレーションを必要とするため、最適化に必要な評価の数を減らす手段を持つことが非常に興味深い。
そこで本研究では,従来の最適化タスクから解を転送するアルゴリズムの能力を研究できるシステム柔軟性の枠組みの観点から,異なる生産要件を最適化することを検討する。
直交金属切断のための拡張Oxleyモデルに基づいて、異なる材料が関連する最適化タスクを定義する多目的最適化ベンチマークを導入し、NSGA-IIの柔軟性の研究に利用し、2つの変種で拡張する。
1) 2つのタスクのソリューションを同時に最適化して、より適応性が期待できるソース間のソリューションを得ること。
2) 活性不活性な遺伝子型は、活性化または非活性化の異なる可能性を満たす。
その結果、標準nsga-iiへの適応により、目標目標に対する最適化に必要な評価数が大幅に減少するのに対し、提案手法では適応コストがさらに向上することが示された。
関連論文リスト
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
この研究は2次元空間において単目的最適化を採用し、複数の反復で各ベンチマーク関数上でADEDSを実行する。
ADEDSは、多くの局所最適化、プレート型、谷型、伸縮型、ノイズの多い機能を含む様々な最適化課題において、標準Dより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-02T10:05:41Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
本稿では、広く使われている進化的多目的最適化アルゴリズムNSGA-IIに組み込んだ最適化手法を提案する。
提案手法は, 幾何的制約の安価さを利用して, カスタム補修演算子を用いて実現可能な設計を生成する。
論文 参考訳(メタデータ) (2022-06-03T17:13:29Z) - Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters [0.0]
ロバスト設計の最適化は、不確実性が主に目的関数に影響を与える場合、伝統的に考慮されている。
結果として生じるネスト最適化問題は、非支配的ソート遺伝的アルゴリズム(NSGA-II)において、汎用的な解法を用いて解決することができる。
提案手法は、適応的に構築されたKrigingモデルを用いて、NSGA-IIを順次実行し、量子を推定する。
論文 参考訳(メタデータ) (2022-03-03T20:23:18Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
革新」とは、最適化問題においてパレート最適化(PO)ソリューションの一部または全部の共通関係を学習するタスクである。
近年の研究では、非支配的なソリューションの時系列配列もまた、問題の特徴を学習するのに使える有能なパターンを持っていることが示されている。
本稿では,Pareto-Optimal 集合に向けて,集団構成員を前進させるために必要な設計変数の修正を学習する機械学習(ML-)支援モデル手法を提案する。
論文 参考訳(メタデータ) (2020-11-21T10:29:15Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。