論文の概要: Evaluating and Inducing Personality in Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2206.07550v3
- Date: Sun, 29 Oct 2023 04:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 01:40:30.194510
- Title: Evaluating and Inducing Personality in Pre-trained Language Models
- Title(参考訳): 事前学習型言語モデルにおけるパーソナリティの評価と誘導
- Authors: Guangyuan Jiang, Manjie Xu, Song-Chun Zhu, Wenjuan Han, Chi Zhang,
Yixin Zhu
- Abstract要約: 人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
- 参考スコア(独自算出の注目度): 78.19379997967191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standardized and quantified evaluation of machine behaviors is a crux of
understanding LLMs. In this study, we draw inspiration from psychometric
studies by leveraging human personality theory as a tool for studying machine
behaviors. Originating as a philosophical quest for human behaviors, the study
of personality delves into how individuals differ in thinking, feeling, and
behaving. Toward building and understanding human-like social machines, we are
motivated to ask: Can we assess machine behaviors by leveraging human
psychometric tests in a principled and quantitative manner? If so, can we
induce a specific personality in LLMs? To answer these questions, we introduce
the Machine Personality Inventory (MPI) tool for studying machine behaviors;
MPI follows standardized personality tests, built upon the Big Five Personality
Factors (Big Five) theory and personality assessment inventories. By
systematically evaluating LLMs with MPI, we provide the first piece of evidence
demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise
a Personality Prompting (P^2) method to induce LLMs with specific personalities
in a controllable way, capable of producing diverse and verifiable behaviors.
We hope this work sheds light on future studies by adopting personality as the
essential indicator for various downstream tasks, and could further motivate
research into equally intriguing human-like machine behaviors.
- Abstract(参考訳): 機械の挙動の標準化と定量化はLLMの理解の要点である。
本研究では,人間の性格理論を機械行動研究の道具として活用し,心理計測からインスピレーションを得た。
人間の行動に対する哲学的な探求として始まり、個性の研究は個人が思考、感覚、行動においてどのように異なるかに焦点をあてる。
人間の心理測定を原則的かつ定量的に活用することで、マシンの挙動を評価できますか?
もしそうなら、LSMに特定の性格を誘導できるだろうか?
これらの質問に答えるために、機械の行動を研究するためのmpi(machine personality inventory)ツールを紹介し、mpiは5つの大きなパーソナリティ要素(big five)理論とパーソナリティアセスメントインベントリに基づいて、標準化されたパーソナリティテストに従っている。
LLMをMPIで体系的に評価することにより,本研究におけるMPIの有効性を示す最初の証拠を提供する。
さらに、特定の個性を持つllmを制御可能な方法で誘導するパーソナリティ促進法(p^2)を考案し、多様で検証可能な行動を生成する。
この研究は、さまざまな下流課題にパーソナリティを欠かせない指標として採用することで将来の研究に光を当て、人間のようなマシンの振る舞いを均等に学べることを願っている。
関連論文リスト
- Do LLM Personas Dream of Bull Markets? Comparing Human and AI Investment Strategies Through the Lens of the Five-Factor Model [0.3495246564946556]
大きな言語モデル(LLM)は、人格を採用し、人間のように振る舞う能力を示している。
本研究は,人格特性が同一である人間と類似した,特定の5つの人格プロファイルを持つLLMペルソナが投資業務を行うか否かを検討した。
LLMは, 学習スタイル, 衝動性, リスク食欲という3つの領域において, 特性を予測行動に一般化することができることがわかった。
論文 参考訳(メタデータ) (2024-10-28T02:50:41Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
大規模言語モデル(LLM)は、日常の生活や研究にますます利用されている。
与えられたLLMの性格を測定することは、現在課題である。
言語モデル言語パーソナリティアセスメント(LMLPA)は,LLMの言語的パーソナリティを評価するシステムである。
論文 参考訳(メタデータ) (2024-10-23T07:48:51Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality [12.162460438332152]
本研究では,人格質問紙に対する回答を通じて,人格特性の証明における言語モデル(LLM)の信頼性について検討した。
我々のゴールは、LLMの人格傾向と実際の「行動」との整合性を評価することである。
本研究では,心理学的理論とメトリクスに基づく観察結果の仮説を提案する。
論文 参考訳(メタデータ) (2024-02-22T16:32:08Z) - Illuminating the Black Box: A Psychometric Investigation into the
Multifaceted Nature of Large Language Models [3.692410936160711]
本研究では,AIパーソナリティやAInalityの概念を探求し,Large Language Models(LLM)が人間のパーソナリティに似たパターンを示すことを示唆する。
プロジェクティブテストを用いて,直接質問を通じて容易にはアクセスできないLLM個性の隠れた側面を明らかにする。
機械学習解析の結果,LSMは異なるAinality特性を示し,多様な性格型を示し,外的指示に応答して動的に変化を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-12-21T04:57:21Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。