論文の概要: Human Activity Recognition on Time Series Accelerometer Sensor Data
using LSTM Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2206.07654v1
- Date: Fri, 3 Jun 2022 19:24:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-19 23:35:03.248828
- Title: Human Activity Recognition on Time Series Accelerometer Sensor Data
using LSTM Recurrent Neural Networks
- Title(参考訳): LSTMリカレントニューラルネットワークを用いた時系列加速度センサデータの人間の活動認識
- Authors: Chrisogonas O. Odhiambo, Sanjoy Saha, Corby K. Martin, Homayoun
Valafar
- Abstract要約: 本研究では,スマートウォッチの加速度センサを用いて食行動を認識することに焦点を当てた。
ピザを食べながら10人の被験者からセンサデータを収集した。
LSTM-ANNアーキテクチャは,パフ,薬物服用,ジョギング活動と比較して90%の成功率を示した。
- 参考スコア(独自算出の注目度): 0.2294014185517203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of sensors available through smart devices has pervaded everyday life
in several applications including human activity monitoring, healthcare, and
social networks. In this study, we focus on the use of smartwatch accelerometer
sensors to recognize eating activity. More specifically, we collected sensor
data from 10 participants while consuming pizza. Using this information, and
other comparable data available for similar events such as smoking and
medication-taking, and dissimilar activities of jogging, we developed a
LSTM-ANN architecture that has demonstrated 90% success in identifying
individual bites compared to a puff, medication-taking or jogging activities.
- Abstract(参考訳): スマートデバイスによるセンサの利用は、ヒューマンアクティビティモニタリング、ヘルスケア、ソーシャルネットワークなど、いくつかのアプリケーションで日常生活に浸透している。
本研究では,スマートウォッチの加速度センサによる摂食行動の認識に着目した。
具体的には、ピザを食べながら10人の被験者からセンサーデータを収集した。
この情報や,喫煙や薬物服用などの類似したイベントやジョギングの異なる活動に利用できる他のデータを用いて,我々は,パフや薬物服用,ジョギング活動と比較して,個々の噛みを識別する上で90%の成功を収めたLSTM-ANNアーキテクチャを開発した。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
本研究は, 深層建築を用いて異なる活動を行う人間の記録から, 個人とソフトバイオメトリックスを同定する。
マルチチャネル時系列ヒューマンアクティビティ認識(HAR)の4つのデータセットに対する手法の評価を行った。
ソフトバイオメトリクスに基づく属性表現は、有望な結果を示し、より大きなデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2023-04-04T07:24:51Z) - Your Day in Your Pocket: Complex Activity Recognition from Smartphone
Accelerometers [7.335712499936904]
本稿では,スマートフォン加速度計データのみを用いた複雑な活動の認識について検討する。
パンデミックの間、私たちは5カ国600人以上のユーザーから収集された大規模なスマートフォンセンシングデータセットを使用しました。
ディープラーニングに基づく8つの複雑なアクティビティのバイナリ分類は、AUROCスコアが部分的にパーソナライズされたモデルで最大0.76に達することで達成できる。
論文 参考訳(メタデータ) (2023-01-17T16:22:30Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
本研究は, 単モーダルおよび多モーダルな行動的生体特性の比較分析を行った。
HuMIdbは、最大かつ最も包括的なモバイルユーザインタラクションデータベースである。
我々の実験では、最も識別可能な背景センサーは磁力計であり、タッチタスクではキーストロークで最良の結果が得られる。
論文 参考訳(メタデータ) (2022-03-14T17:05:59Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
正確な活動ラベルを含むバランスのとれたデータセットを取得するには、人間が正しく注釈を付け、リアルタイムで被験者の通常の活動に干渉する必要がある。
本研究では,HAR-GCCNモデルを提案する。HAR-GCCNは,時系列に隣接したセンサ測定の相関を利用して,不特定活動の正確なラベルを予測する。
Har-GCCNは、これまで使用されていたベースライン手法と比較して優れたパフォーマンスを示し、分類精度を25%改善し、異なるデータセットで最大68%向上した。
論文 参考訳(メタデータ) (2022-03-07T01:23:46Z) - Physical Activity Recognition by Utilising Smartphone Sensor Signals [0.0]
本研究では,現代のスマートフォンでジャイロスコープと加速度センサによって記録された計6つの活動に対して,60人の被験者から2日間にわたる人的活動データを収集した。
提案手法は,4つの活動の識別において,98%の分類精度を達成した。
論文 参考訳(メタデータ) (2022-01-20T09:58:52Z) - Attention-Based Sensor Fusion for Human Activity Recognition Using IMU
Signals [4.558966602878624]
本稿では,異なる身体部位に装着した複数のIMUセンサを用いた人体行動認識のための新しいアテンションベースアプローチを提案する。
異なる身体位置におけるセンサの重要性を学習し、注意に基づく融合機構を開発し、注意的特徴表現を生成する。
提案手法は,5つの公開データセットを用いて評価し,多種多様な活動カテゴリにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-12-20T17:00:27Z) - Human Activity Recognition using Deep Learning Models on Smartphones and
Smartwatches Sensor Data [0.0]
We use the popular WISDM dataset for activity recognition。
スマートフォンやスマートウォッチは、着ている場所によって、同じ方法でデータをキャプチャしません。
論文 参考訳(メタデータ) (2021-02-28T06:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。