論文の概要: MultiIoT: Benchmarking Machine Learning for the Internet of Things
- arxiv url: http://arxiv.org/abs/2311.06217v2
- Date: Thu, 4 Jul 2024 05:16:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:42:23.904467
- Title: MultiIoT: Benchmarking Machine Learning for the Internet of Things
- Title(参考訳): MultiIoT:モノのインターネットのための機械学習ベンチマーク
- Authors: Shentong Mo, Louis-Philippe Morency, Russ Salakhutdinov, Paul Pu Liang,
- Abstract要約: 次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
- 参考スコア(独自算出の注目度): 70.74131118309967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The next generation of machine learning systems must be adept at perceiving and interacting with the physical world through a diverse array of sensory channels. Commonly referred to as the `Internet of Things (IoT)' ecosystem, sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments and the humans inside them. Despite the potential for understanding human wellbeing, controlling physical devices, and interconnecting smart cities, the community has seen limited benchmarks for building machine learning systems for IoT. Existing efforts are often specialized to a single sensory modality or prediction task, which makes it difficult to study and train large-scale models across many IoT sensors and tasks. To accelerate the development of new machine learning technologies for IoT, this paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks. MultiIoT introduces unique challenges involving (1) generalizable learning from many sensory modalities, (2) multimodal interactions across long temporal ranges, (3) extreme heterogeneity due to unique structure and noise topologies in real-world sensors, and (4) complexity during training and inference. We evaluate a comprehensive set of models on MultiIoT, including modality and task-specific methods, multisensory and multitask supervised models, and large multisensory foundation models. Our results highlight opportunities for ML to make a significant impact in IoT, but many challenges in scalable learning from heterogeneous, long-range, and imperfect sensory modalities still persist. We release all code and data to accelerate future research in machine learning for IoT.
- Abstract(参考訳): 次世代の機械学習システムは、多様な感覚チャネルを通じて物理的な世界を知覚し、相互作用しなくてはならない。
一般的には"IoT(Internet of Things)"エコシステムと呼ばれ、運動、熱、位置情報、深度、無線信号、ビデオ、オーディオといった感覚データを、物理的な環境と内部の人間の状態のモデル化に利用している。
人間の幸福を理解し、物理的デバイスを制御し、スマートシティを相互接続する可能性にもかかわらず、コミュニティはIoTのための機械学習システムを構築するための限られたベンチマークを見てきた。
既存の取り組みは、単一の知覚的モダリティや予測タスクに特化していることが多いため、多くのIoTセンサやタスクにわたる大規模なモデルの研究とトレーニングが困難になる。
この論文では、IoTのための新しい機械学習技術の開発を加速するために、12のモダリティと8つの実世界のタスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMulti IoTを提案する。
マルチIoTは,(1)多くの感覚モーダル性からの一般化可能な学習,(2)長期にわたるマルチモーダルインタラクション,(3)現実世界のセンサにおけるユニークな構造とノイズトポロジによる極端な異質性,(4)トレーニングと推論の複雑さなど,ユニークな課題を導入している。
モータリティとタスク固有の手法,マルチセンサとマルチタスクの教師付きモデル,大規模マルチセンサ基盤モデルなどを含む,MultiIoTの包括的なモデルセットを評価する。
私たちの結果は、MLがIoTに大きな影響を与える機会を浮き彫りにしていますが、異種、長距離、不完全な感覚のモダリティからのスケーラブルな学習には、多くの課題がまだ残っています。
IoTのための機械学習の研究を加速するために、すべてのコードとデータをリリースします。
関連論文リスト
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoTエコシステムは、モーション、サーマル、ジオロケーション、イメージング、ディープ、センサー、オーディオといった、現実世界のモダリティの豊富なソースを提供する。
機械学習は、IoTデータを大規模に自動的に処理する豊富な機会を提供する。
IoTエコシステムに適した,オープンソースの大規模マルチセンサ言語モデルであるIoT-LMを紹介します。
論文 参考訳(メタデータ) (2024-07-13T08:20:37Z) - Foundations of Multisensory Artificial Intelligence [32.56967614091527]
この論文は、多感覚AIの機械学習基盤を前進させることを目的としている。
第1部では,タスクに対する新たな情報を生み出すために,モーダルティが相互にどのように相互作用するかを定式化する理論的枠組みを提案する。
第2部では、多くのモダリティやタスクを一般化する実用的なマルチモーダル基礎モデルの設計について検討する。
論文 参考訳(メタデータ) (2024-04-29T14:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
IoT(Internet of Things)は、世界中の何十億ものインテリジェントデバイスを統合し、他の接続デバイスと通信する機能を備えている。
IoTによって収集されたデータには、異常検出のための膨大な情報が含まれている。
本稿では,異常検出によるIoTサイバーセキュリティ向上のためのアンサンブル機械学習手法について検討する。
論文 参考訳(メタデータ) (2023-07-20T05:23:49Z) - Graph Neural Networks in IoT: A Survey [9.257834364029547]
IoT(Internet of Things)ブームは、人々の日常生活のほぼすべての部分に革命をもたらした。
ディープラーニングモデルは、IoTタスクの解決に広く採用されている。
グラフニューラルネットワーク(GNN)は、多くのIoT学習タスクで最先端の結果を達成するために実証されている。
論文 参考訳(メタデータ) (2022-03-29T22:27:59Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) はインタラクティブなマルチモーダル物理シミュレーションのためのプラットフォームである。
TDWは、リッチな3D環境において、高忠実な感覚データのシミュレーションと、移動体エージェントとオブジェクト間の物理的相互作用を可能にする。
我々は、コンピュータビジョン、機械学習、認知科学における新たな研究方向において、TDWによって実現された初期実験を提示する。
論文 参考訳(メタデータ) (2020-07-09T17:33:27Z) - Personalized Federated Learning for Intelligent IoT Applications: A
Cloud-Edge based Framework [12.199870302894439]
IoT(Internet of Things)は、現代生活のさまざまな側面に広く浸透している。
この記事では、インテリジェントなIoTアプリケーションのためのクラウドエッジアーキテクチャにおいて、パーソナライズされたフェデレーション付き学習フレームワークを推奨します。
論文 参考訳(メタデータ) (2020-02-25T05:11:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。