Implementing two-qubit gates at the quantum speed limit
- URL: http://arxiv.org/abs/2206.07716v4
- Date: Fri, 1 Dec 2023 16:38:17 GMT
- Title: Implementing two-qubit gates at the quantum speed limit
- Authors: Joel Howard, Alexander Lidiak, Casey Jameson, Bora Basyildiz, Kyle
Clark, Tongyu Zhao, Mustafa Bal, Junling Long, David P. Pappas, Meenakshi
Singh, Zhexuan Gong
- Abstract summary: We experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed.
We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method.
We expect our method to offer significant speedups for non-native two-qubit gates.
- Score: 33.51056531486263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The speed of elementary quantum gates, particularly two-qubit gates,
ultimately sets the limit on the speed at which quantum circuits can operate.
In this work, we experimentally demonstrate commonly used two-qubit gates at
nearly the fastest possible speed allowed by the physical interaction strength
between two superconducting transmon qubits. We achieve this quantum speed
limit by implementing experimental gates designed using a machine learning
inspired optimal control method. Importantly, our method only requires the
single-qubit drive strength to be moderately larger than the interaction
strength to achieve an arbitrary two-qubit gate close to its analytical speed
limit with high fidelity. Thus, the method is applicable to a variety of
platforms including those with comparable single-qubit and two-qubit gate
speeds, or those with always-on interactions. We expect our method to offer
significant speedups for non-native two-qubit gates that are typically achieved
with a long sequence of single-qubit and native two-qubit gates.
Related papers
- Speed limits of two-qubit gates with qudits [0.5852077003870417]
We find an optimal theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction strength and arbitrarily fast single-qudit gates.
We develop an open-source, machine learning assisted, quantum optimal control algorithm that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity.
arXiv Detail & Related papers (2023-12-14T18:49:11Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Single Shot i-Toffoli Gate in Dispersively Coupled Superconducting
Qubits [0.0]
Quantum algorithms often benefit from the ability to execute multi-qubit (>2) gates.
We propose a single shot method for executing an i-Toffoli gate, a three-qubit gate gate with two control and one target qubit.
We show numerical evidence for a process fidelity over 98% and a gate time of 500 ns for superconducting qubits interacting via tunable couplers.
arXiv Detail & Related papers (2021-11-10T20:53:51Z) - Speed limits for two-qubit gates with weakly anharmonic qubits [0.6738135972929344]
We use optimal control theory to determine the maximum achievable gate speed for two-qubit gates.
We analyze the effect of the additional quantum states on the gate speed.
arXiv Detail & Related papers (2021-09-03T12:07:59Z) - Fast multi-qubit gates through simultaneous two-qubit gates [0.5949967357689445]
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity.
One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates.
We show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits.
arXiv Detail & Related papers (2021-08-25T17:24:31Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Efficient, stabilized two-qubit gates on a trapped-ion quantum computer [4.547776040126478]
We present two methods to construct optimal pulses for entangling gates on a pair of ions within a trapped ion chain.
We illustrate these trade-offs on a trapped-ion quantum computer.
arXiv Detail & Related papers (2021-01-19T22:40:28Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.