Single Shot i-Toffoli Gate in Dispersively Coupled Superconducting
Qubits
- URL: http://arxiv.org/abs/2111.05938v1
- Date: Wed, 10 Nov 2021 20:53:51 GMT
- Title: Single Shot i-Toffoli Gate in Dispersively Coupled Superconducting
Qubits
- Authors: Aneirin J. Baker, Gerhard B. P. Huber, Niklas J. Glaser, Federico Roy,
Ivan Tsitsilin, Stefan Filipp and Michael J. Hartmann
- Abstract summary: Quantum algorithms often benefit from the ability to execute multi-qubit (>2) gates.
We propose a single shot method for executing an i-Toffoli gate, a three-qubit gate gate with two control and one target qubit.
We show numerical evidence for a process fidelity over 98% and a gate time of 500 ns for superconducting qubits interacting via tunable couplers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms often benefit from the ability to execute multi-qubit (>2)
gates. To date such multi-qubit gates are typically decomposed into single- and
two-qubit gates, particularly in superconducting qubit architectures. The
ability to perform multi-qubit operations in a single step could vastly improve
the fidelity and execution time of many algorithms. Here, we propose a single
shot method for executing an i-Toffoli gate, a three-qubit gate gate with two
control and one target qubit, using currently existing superconducting
hardware. We show numerical evidence for a process fidelity over 98% and a gate
time of 500 ns for superconducting qubits interacting via tunable couplers. Our
method can straight forwardly be extended to implement gates with more than two
control qubits at similar fidelities.
Related papers
- Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Multipartite Entanglement in Rabi Driven Superconducting Qubits [0.0]
We demonstrate a multi-qubit STAR (Sideband Tone Assisted Rabi driven) gate.
Our scheme is inspired by the ion qubit Molmer-Sorensen gate and is mediated by a shared photonic mode and superconducting qubits.
We achieve a two-qubit gate with maximum state fidelity of 0.95 in 310 ns, a three-qubit gate with state fidelity 0.905 in 217 ns, and a four-qubit gate with state fidelity 0.66 in 200 ns.
arXiv Detail & Related papers (2022-07-01T00:00:56Z) - Implementing two-qubit gates at the quantum speed limit [33.51056531486263]
We experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed.
We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method.
We expect our method to offer significant speedups for non-native two-qubit gates.
arXiv Detail & Related papers (2022-06-15T18:00:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Fast multi-qubit gates through simultaneous two-qubit gates [0.5949967357689445]
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity.
One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates.
We show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits.
arXiv Detail & Related papers (2021-08-25T17:24:31Z) - High-fidelity three-qubit iToffoli gate for fixed-frequency
superconducting qubits [0.0]
We introduce a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect.
The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%.
We numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and iToffoli gates.
arXiv Detail & Related papers (2021-08-23T17:00:16Z) - Improving qubit coherence using closed-loop feedback [42.60602838972598]
We experimentally employ closed-loop feedback to stabilize the frequency fluctuations of a superconducting transmon qubit.
The resulting high-fidelity operation remains effective even away from the qubit flux-noise insensitive point.
arXiv Detail & Related papers (2021-05-03T18:28:06Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.