Taxonomy of Benchmarks in Graph Representation Learning
- URL: http://arxiv.org/abs/2206.07729v1
- Date: Wed, 15 Jun 2022 18:01:10 GMT
- Title: Taxonomy of Benchmarks in Graph Representation Learning
- Authors: Renming Liu, Semih Cant\"urk, Frederik Wenkel, Dylan Sandfelder, Devin
Kreuzer, Anna Little, Sarah McGuire, Leslie O'Bray, Michael Perlmutter,
Bastian Rieck, Matthew Hirn, Guy Wolf, Ladislav Ramp\'a\v{s}ek
- Abstract summary: Graph Neural Networks (GNNs) extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry.
It is currently not well understood what aspects of a given model are probed by graph representation learning benchmarks.
Here, we develop a principled approach to taxonomize benchmarking datasets according to a $textitsensitivity profile$ that is based on how much GNN performance changes due to a collection of graph perturbations.
- Score: 14.358071994798964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) extend the success of neural networks to
graph-structured data by accounting for their intrinsic geometry. While
extensive research has been done on developing GNN models with superior
performance according to a collection of graph representation learning
benchmarks, it is currently not well understood what aspects of a given model
are probed by them. For example, to what extent do they test the ability of a
model to leverage graph structure vs. node features? Here, we develop a
principled approach to taxonomize benchmarking datasets according to a
$\textit{sensitivity profile}$ that is based on how much GNN performance
changes due to a collection of graph perturbations. Our data-driven analysis
provides a deeper understanding of which benchmarking data characteristics are
leveraged by GNNs. Consequently, our taxonomy can aid in selection and
development of adequate graph benchmarks, and better informed evaluation of
future GNN methods. Finally, our approach and implementation in
$\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task
types and future datasets.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
We design a graph neural network framework for graph classification task by introducing PAS(Pooling Architecture Search)
We improve it based on the GNN topology design method F2GNN to further improve the performance of the model in the graph property prediction task.
It is proved that the NAS method has high generalization ability for multiple tasks and the advantage of our method in processing graph property prediction tasks.
arXiv Detail & Related papers (2022-07-13T08:17:48Z) - Attention-Based Recommendation On Graphs [9.558392439655012]
Graph Neural Networks (GNN) have shown remarkable performance in different tasks.
In this study, we propose GARec as a model-based recommender system.
The presented method outperforms existing model-based, non-graph neural networks and graph neural networks in different MovieLens datasets.
arXiv Detail & Related papers (2022-01-04T21:02:02Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Towards a Taxonomy of Graph Learning Datasets [10.151886932716518]
Graph neural networks (GNNs) have attracted much attention due to their ability to leverage the intrinsic geometries of the underlying data.
Here, we provide a principled approach to taxonomize graph benchmarking datasets by carefully designing a collection of graph perturbations.
Our data-driven taxonomization of graph datasets provides a new understanding of critical dataset characteristics.
arXiv Detail & Related papers (2021-10-27T23:08:01Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.