論文の概要: Adaptive Expert Models for Personalization in Federated Learning
- arxiv url: http://arxiv.org/abs/2206.07832v1
- Date: Wed, 15 Jun 2022 22:05:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-18 16:58:51.248012
- Title: Adaptive Expert Models for Personalization in Federated Learning
- Title(参考訳): フェデレーション学習におけるパーソナライズのための適応的エキスパートモデル
- Authors: Martin Isaksson, Edvin Listo Zec, Rickard C\"oster, Daniel Gillblad,
\v{S}ar\=unas Girdzijauskas
- Abstract要約: フェデレートラーニング(FL)は、データがプライベートでセンシティブな場合、分散ラーニングのための有望なフレームワークである。
本研究では,不均質データや非IIDデータに適応するFLのパーソナライズへの実用的で堅牢なアプローチを提案する。
本研究は,病的非IID条件下での局所モデルと比較して,最大29.78 %,最大4.38 %の精度を実現していることを示す。
- 参考スコア(独自算出の注目度): 0.9449650062296824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a promising framework for distributed learning
when data is private and sensitive. However, the state-of-the-art solutions in
this framework are not optimal when data is heterogeneous and non-Independent
and Identically Distributed (non-IID). We propose a practical and robust
approach to personalization in FL that adjusts to heterogeneous and non-IID
data by balancing exploration and exploitation of several global models. To
achieve our aim of personalization, we use a Mixture of Experts (MoE) that
learns to group clients that are similar to each other, while using the global
models more efficiently. We show that our approach achieves an accuracy up to
29.78 % and up to 4.38 % better compared to a local model in a pathological
non-IID setting, even though we tune our approach in the IID setting.
- Abstract(参考訳): フェデレーション学習(federated learning、fl)は、データがプライベートで機密性の高い場合の、分散学習のための有望なフレームワークである。
しかし、このフレームワークの最先端のソリューションは、データが不均一で非独立で、Identically Distributed(非IID)であるときに最適ではない。
FLにおけるパーソナライズのための実用的でロバストなアプローチを提案し、複数のグローバルモデルの探索と利用のバランスをとることによって、異種および非IIDデータに適応する。
パーソナライゼーションの目的を達成するために、グローバルモデルをより効率的に使用しながら、互いに類似したクライアントをグループ化するMixture of Experts(MoE)を使用します。
病理的非iid設定の局所モデルと比較して, iid設定でのアプローチを調整しても, 精度は最大29.78 %, 最大4.38 %向上することを示した。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer [0.0]
フェデレートラーニング(FL)は、分散データ上で単一のモデルを生成するための、プライバシ保護機械学習パラダイムとして人気がある。
適応的特徴集約と知識伝達(FedAFK)による個人化学習手法を提案する。
広範に使われている2つの不均一な条件下で3つのデータセットについて広範な実験を行い、提案手法が13の最先端ベースラインに対して優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-19T11:32:39Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - PRIOR: Personalized Prior for Reactivating the Information Overlooked in
Federated Learning [16.344719695572586]
各クライアントのグローバルモデルにパーソナライズされた事前知識を注入する新しいスキームを提案する。
提案したアプローチの中心は,Bregman Divergence (pFedBreD) による PFL フレームワークである。
提案手法は5つのデータセット上での最先端のパフォーマンスに到達し、8つのベンチマークで最大3.5%性能を向上する。
論文 参考訳(メタデータ) (2023-10-13T15:21:25Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETsは、Federated Learning(FL)セットアップ内でMixture-of-Experts(MoE)フレームワークを使用することで、新しいソリューションである。
我々の方法は、クライアントの多様性を活用して、クラスのサブセットの異なる専門家を訓練し、最も関係のある専門家に入力をルーティングするゲーティング機能を提供します。
我々の手法は、競争力のあるゼロショット性能を維持しながら、アートFL設定時の精度を最大18%向上させることができる。
論文 参考訳(メタデータ) (2023-06-14T15:47:52Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
異なるエッジデバイス(クライアント)にまたがるローカルデータの不均一な分散は、フェデレート学習における遅いモデルトレーニングと精度の低下をもたらす。
この研究は、実世界のデータセット、すなわちクラスタスキューで発生する新しい非IID型を導入している。
我々は,各クライアントのインパクト要因を適応的に決定するために,深層強化学習を用いた新しいFLモデルであるFedDRLを提案する。
論文 参考訳(メタデータ) (2022-08-04T04:24:16Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Subspace Learning for Personalized Federated Optimization [7.475183117508927]
本稿では,AIシステムにおけるパーソナライズされた学習の問題に対処する手法を提案する。
提案手法は、パーソナライズされたクライアント評価設定と見当たらないクライアント評価設定の両方において、一貫した利得が得られることを示す。
論文 参考訳(メタデータ) (2021-09-16T00:03:23Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。