論文の概要: Introducing the Huber mechanism for differentially private low-rank
matrix completion
- arxiv url: http://arxiv.org/abs/2206.07910v1
- Date: Thu, 16 Jun 2022 04:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-18 12:59:21.618969
- Title: Introducing the Huber mechanism for differentially private low-rank
matrix completion
- Title(参考訳): 微分プライベート低ランク行列補完のためのHuber機構の導入
- Authors: R Adithya Gowtham, Gokularam M, Thulasi Tholeti, Sheetal Kalyani
- Abstract要約: 差分プライバシーを維持するための新しいノイズ付加機構を提案する。
提案するHuberメカニズムは,既存の差分プライバシーメカニズムに対して評価される。
提案機構は,Laplace機構と同様のエプシロン差分プライバシーを実現する。
- 参考スコア(独自算出の注目度): 9.944551494217075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing low-rank matrix completion with sensitive user data calls for
privacy-preserving approaches. In this work, we propose a novel noise addition
mechanism for preserving differential privacy where the noise distribution is
inspired by Huber loss, a well-known loss function in robust statistics. The
proposed Huber mechanism is evaluated against existing differential privacy
mechanisms while solving the matrix completion problem using the Alternating
Least Squares approach. We also propose using the Iteratively Re-Weighted Least
Squares algorithm to complete low-rank matrices and study the performance of
different noise mechanisms in both synthetic and real datasets. We prove that
the proposed mechanism achieves {\epsilon}-differential privacy similar to the
Laplace mechanism. Furthermore, empirical results indicate that the Huber
mechanism outperforms Laplacian and Gaussian in some cases and is comparable,
otherwise.
- Abstract(参考訳): プライバシ保存アプローチのためのセンシティブなユーザデータコールによる低ランクマトリックス補完の実行。
本研究では,統計的によく知られた損失関数であるハマー損失にインスパイアされた雑音分布の差分プライバシーを維持するための新しいノイズ付加機構を提案する。
提案するHuber機構は,行列補完問題をAlternating Least Squaresアプローチを用いて解きながら,既存の差分プライバシー機構に対して評価する。
また,最小二乗法を反復重み付けして低ランク行列を完結させ,合成データと実データの両方において異なる雑音機構の性能について検討する。
提案機構は,Laplace機構と同様の差分プライバシーを実現することを実証する。
さらに, 実験結果から, フーバー機構がラプラシア語やガウス語よりも優れており, それ以外は同等であることが示唆された。
関連論文リスト
- Less is More: Revisiting the Gaussian Mechanism for Differential Privacy [8.89234867625102]
出力摂動による差分プライバシーは、機密データに対してクエリや計算結果をリリースするためのデファクトスタンダードとなっている。
既存のガウスのメカニズムはすべて、フルランクの共分散行列の呪いに苦しむ。
論文 参考訳(メタデータ) (2023-06-04T04:14:38Z) - On User-Level Private Convex Optimization [59.75368670035683]
ユーザレベルの差分プライバシー保証を伴う凸最適化(SCO)のための新しいメカニズムを提案する。
我々のメカニズムは損失に対する滑らかさの仮定を必要としない。
私たちの限界は、ユーザレベルのプライバシーに必要な最小限のユーザが、その次元に依存しない、最初のものです。
論文 参考訳(メタデータ) (2023-05-08T17:47:28Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Differential Privacy with Higher Utility by Exploiting Coordinate-wise Disparity: Laplace Mechanism Can Beat Gaussian in High Dimensions [9.20186865054847]
我々は、i.n.d. Gaussian と Laplace のメカニズムを研究し、これらのメカニズムがプライバシーを保証する条件を得る。
i.n.d.ノイズは, (a) 座標降下, (b) 主成分分析, (c) グループクリッピングによる深層学習における性能を向上することを示す。
論文 参考訳(メタデータ) (2023-02-07T14:54:20Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy
Constraints [53.01656650117495]
研究者と実践者の間には、プライバシとユーティリティのトレードオフの扱い方の違いがある。
ブラウン機構は、まず擬ブラウン運動の最終点に対応する高分散のガウス雑音を加えることで機能する。
我々は、古典的AboveThresholdアルゴリズムの一般化であるReduceedAboveThresholdでブラウン機構を補完する。
論文 参考訳(メタデータ) (2022-06-15T01:43:37Z) - Additive Logistic Mechanism for Privacy-Preserving Self-Supervised
Learning [26.783944764936994]
ニューラルネットワークの重みを自己教師付き学習アルゴリズムでトレーニングする際のプライバシーリスクについて検討する。
我々は、微調整後の重み付けにノイズを加えるプライバシー保護アルゴリズムを設計する。
提案した保護アルゴリズムは,攻撃精度をランダムな推測にほぼ等しい50%に効果的に低減できることを示す。
論文 参考訳(メタデータ) (2022-05-25T01:33:52Z) - Learning Numeric Optimal Differentially Private Truncated Additive
Mechanisms [5.079561894598125]
実効性境界が強い付加的なメカニズムに対して,トランクテッドノイズを学習するためのツールを提案する。
平均単調な単調な音から, 対称性やその新しい音を考慮すれば十分であることを示す。
感度境界機構については, 平均単調な単調なノイズから, 対称性とその新しさを考えるのに十分であることを示す。
論文 参考訳(メタデータ) (2021-07-27T17:22:57Z) - Robust Compressed Sensing using Generative Models [98.64228459705859]
本稿では,Median-of-Means (MOM) にヒントを得たアルゴリズムを提案する。
我々のアルゴリズムは、外れ値が存在する場合でも、重み付きデータの回復を保証する。
論文 参考訳(メタデータ) (2020-06-16T19:07:41Z) - Tight Differential Privacy for Discrete-Valued Mechanisms and for the
Subsampled Gaussian Mechanism Using FFT [6.929834518749884]
離散的な1次元の出力を持つアルゴリズムに対して,厳密な$(varepsilon,delta)$-privacy損失を評価するための数値会計法を提案する。
本稿では,従来の文献と同等のプライバシーで,ノイズ分散を最大75%低減できることを示す。
論文 参考訳(メタデータ) (2020-06-12T12:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。