論文の概要: Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy
- arxiv url: http://arxiv.org/abs/2302.09624v3
- Date: Thu, 1 Feb 2024 16:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 20:02:31.619687
- Title: Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy
- Title(参考訳): 通信-プライバシー-accuracy トレードオフを$f$-differential privacyで破る
- Authors: Richeng Jin, Zhonggen Su, Caijun Zhong, Zhaoyang Zhang, Tony Quek,
Huaiyu Dai
- Abstract要約: サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
- 参考スコア(独自算出の注目度): 51.11280118806893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a federated data analytics problem in which a server coordinates
the collaborative data analysis of multiple users with privacy concerns and
limited communication capability. The commonly adopted compression schemes
introduce information loss into local data while improving communication
efficiency, and it remains an open problem whether such discrete-valued
mechanisms provide any privacy protection. In this paper, we study the local
differential privacy guarantees of discrete-valued mechanisms with finite
output space through the lens of $f$-differential privacy (DP). More
specifically, we advance the existing literature by deriving tight $f$-DP
guarantees for a variety of discrete-valued mechanisms, including the binomial
noise and the binomial mechanisms that are proposed for privacy preservation,
and the sign-based methods that are proposed for data compression, in
closed-form expressions. We further investigate the amplification in privacy by
sparsification and propose a ternary stochastic compressor. By leveraging
compression for privacy amplification, we improve the existing methods by
removing the dependency of accuracy (in terms of mean square error) on
communication cost in the popular use case of distributed mean estimation,
therefore breaking the three-way tradeoff between privacy, communication, and
accuracy. Finally, we discuss the Byzantine resilience of the proposed
mechanism and its application in federated learning.
- Abstract(参考訳): 本稿では,複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整するフェデレーションデータ分析問題を考える。
一般に採用されている圧縮方式は、通信効率を向上しながら、ローカルデータに情報損失を導入しており、そのような離散的な値付け機構がプライバシー保護を提供するかどうかについては未解決の問題である。
本稿では,f$-differential privacy (dp) のレンズを通して,有限出力空間を持つ離散値機構の局所的微分プライバシー保証について検討する。
具体的には、プライバシ保存のために提案される二項ノイズや二項メカニズム、およびクローズドフォーム表現においてデータ圧縮のために提案される手話に基づく手法など、様々な離散的なメカニズムの厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
さらに,スペーシングによるプライバシの増幅について検討し,第3次確率圧縮機を提案する。
プライバシ増幅のための圧縮を活用することで、分散平均推定の一般的なユースケースにおいて、通信コストに対する精度(平均二乗誤差)の依存性を取り除き、プライバシ、通信、精度の3方向トレードオフを破ることで、既存の方法を改善する。
最後に,提案機構のビザンチン弾性とそのフェデレート学習への応用について述べる。
関連論文リスト
- Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management [23.847568516724937]
本稿では,DP-SGDアルゴリズムを用いて学習したディープラーニングモデルを用いた新たなプライバシ保存手法を提案する。
次に、ユーザが"保護する方法"ではなく、"保護すべきプライベート情報"を指定可能な、宣言的なプライバシ保護ワークフローを新たにデモします。
論文 参考訳(メタデータ) (2024-01-22T22:50:59Z) - The Symmetric alpha-Stable Privacy Mechanism [0.0]
本稿では,Symmetric alpha-Stable (SaS) 機構の新しい解析法を提案する。
この機構は、畳み込みの下で閉じたまま、純粋に微分プライベートであることを示す。
論文 参考訳(メタデータ) (2023-11-29T16:34:39Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
1ビット通信制約を伴う個別分布推定問題を考える。
1ビット通信制約下での最悪のトレードオフの1次を特徴付ける。
これらの結果は,1ビット通信制約下でのプライバシユーティリティトレードオフの最適依存性を示す。
論文 参考訳(メタデータ) (2023-10-17T05:21:19Z) - Chained-DP: Can We Recycle Privacy Budget? [18.19895364709435]
本稿では,ユーザが順次データアグリゲーションを実行し,プライバシ予算を再利用することのできる,新しいChained-DPフレームワークを提案する。
逐次ゲームの数学的性質を示し、そのナッシュ平衡を解き、証明可能な経済特性を持つインセンティブメカニズムを設計する。
提案手法の有効性を数値シミュレーションにより検証し,従来のLPP機構と比較して,プライバシ予算の大幅な削減と推定誤差の低減を図った。
論文 参考訳(メタデータ) (2023-09-12T08:07:59Z) - Summary Statistic Privacy in Data Sharing [23.50797952699759]
本研究では,データ配信の要約統計を明らかにすることなく,データ保持者が受信者とデータを共有したい状況について検討する。
このようなメカニズムのプライバシーリスクを定量化するための指標である統計プライバシーの要約を提案する。
提案した量子化メカニズムは、代替プライバシメカニズムよりも優れたプライバシー歪曲トレードオフを実現する。
論文 参考訳(メタデータ) (2023-03-03T15:29:19Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
プライバシに敏感なユーザからデータを収集するプラットフォームの問題を考え,その基盤となる関心パラメータを推定する。
ユーザに対して、プライバシ保証を提供するための2つの一般的な差分プライバシ設定について検討する。
このメカニズム設計問題は,ユーザのプライバシ感を真に報告するための推定器と支払器の最適選択として機能する。
論文 参考訳(メタデータ) (2022-01-10T00:27:43Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。