Nucleus Segmentation and Analysis in Breast Cancer with the MIScnn
Framework
- URL: http://arxiv.org/abs/2206.08182v1
- Date: Thu, 16 Jun 2022 13:51:19 GMT
- Title: Nucleus Segmentation and Analysis in Breast Cancer with the MIScnn
Framework
- Authors: Adrian Pfleiderer, Dominik M\"uller, Frank Kramer
- Abstract summary: The Nu dataset contains over 220.000 annotations of cell nuclei in breast cancers.
We show how to use these data to create a multi-rater model with the MIScnn Framework to automate the analysis of cell nuclei.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The NuCLS dataset contains over 220.000 annotations of cell nuclei in breast
cancers. We show how to use these data to create a multi-rater model with the
MIScnn Framework to automate the analysis of cell nuclei. For the model
creation, we use the widespread U-Net approach embedded in a pipeline. This
pipeline provides besides the high performance convolution neural network,
several preprocessor techniques and a extended data exploration. The final
model is tested in the evaluation phase using a wide variety of metrics with a
subsequent visualization. Finally, the results are compared and interpreted
with the results of the NuCLS study. As an outlook, indications are given which
are important for the future development of models in the context of cell
nuclei.
Related papers
- Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - NASDM: Nuclei-Aware Semantic Histopathology Image Generation Using
Diffusion Models [3.2996723916635267]
First-of-its-kind nuclei-aware semantic tissue generation framework (NASDM)
NASDM can synthesize realistic tissue samples given a semantic instance mask of up to six different nuclei types.
These synthetic images are useful in applications in pathology, validation of models, and supplementation of existing nuclei segmentation datasets.
arXiv Detail & Related papers (2023-03-20T22:16:03Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
This paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches.
Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results.
The best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively.
arXiv Detail & Related papers (2022-10-19T15:15:32Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
and Classification [4.642724910208435]
We propose a multi-stage annotation pipeline to enable the collection of large-scale datasets for histology image analysis.
We generate the largest known nuclear instance segmentation and classification dataset, containing nearly half a million labelled nuclei.
arXiv Detail & Related papers (2021-08-25T11:58:52Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
arXiv Detail & Related papers (2021-08-23T12:06:00Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.