論文の概要: Deep Multi-Task Models for Misogyny Identification and Categorization on
Arabic Social Media
- arxiv url: http://arxiv.org/abs/2206.08407v1
- Date: Thu, 16 Jun 2022 18:54:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-21 09:02:40.726074
- Title: Deep Multi-Task Models for Misogyny Identification and Categorization on
Arabic Social Media
- Title(参考訳): アラビア語ソーシャルメディアにおけるミソジニー同定と分類のための深部マルチタスクモデル
- Authors: Abdelkader El Mahdaouy, Abdellah El Mekki, Ahmed Oumar, Hajar
Mousannif, Ismail Berrada
- Abstract要約: 本稿では,最初のアラビア語ミソジニー識別共有タスクについて提案する。
3つのマルチタスク学習モデルと1つのタスク学習モデルについて検討する。
入力テキストを符号化するために、我々のモデルは事前訓練されたMARBERT言語モデルに依存している。
- 参考スコア(独自算出の注目度): 6.6410040715586005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevalence of toxic content on social media platforms, such as hate
speech, offensive language, and misogyny, presents serious challenges to our
interconnected society. These challenging issues have attracted widespread
attention in Natural Language Processing (NLP) community. In this paper, we
present the submitted systems to the first Arabic Misogyny Identification
shared task. We investigate three multi-task learning models as well as their
single-task counterparts. In order to encode the input text, our models rely on
the pre-trained MARBERT language model. The overall obtained results show that
all our submitted models have achieved the best performances (top three ranked
submissions) in both misogyny identification and categorization tasks.
- Abstract(参考訳): ヘイトスピーチ、攻撃的言語、誤認といったソーシャルメディアプラットフォームにおける有害コンテンツの普及は、我々の相互接続社会に深刻な課題をもたらす。
これらの課題は自然言語処理(NLP)コミュニティで広く注目を集めている。
本稿では,提案するシステムについて,第1回アラビア語ミソジニー識別共有タスクについて述べる。
3つのマルチタスク学習モデルと1つのタスク学習モデルについて検討する。
入力テキストを符号化するために、我々のモデルは事前訓練されたMARBERT言語モデルに依存している。
その結果,提案したモデルはすべて,誤認識と分類タスクの両方において,最高の成績(上位3位)を達成していることがわかった。
関連論文リスト
- Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - A multitask learning framework for leveraging subjectivity of annotators to identify misogyny [47.175010006458436]
本研究では,誤識別システムの性能向上を目的としたマルチタスク学習手法を提案する。
6つのプロファイルグループにまたがる性別と年齢を考慮したモデル設計において,アノテータからさまざまな視点を取り入れた。
本研究は、コンテンツモデレーションを推進し、効果的なオンラインモデレーションシステムを構築するための多様な視点を受け入れることの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-22T15:06:08Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - AI-UPV at EXIST 2023 -- Sexism Characterization Using Large Language
Models Under The Learning with Disagreements Regime [2.4261434441245897]
本稿では,CLEF 2023のEXIST (sexism Identification in Social networks) LabへのAI-UPVチームの参加について述べる。
提案手法は、性差別の識別と特徴付けの課題を、不一致のパラダイムによる学習の下で解決することを目的としている。
提案システムは、大きな言語モデル(mBERTとXLM-RoBERTa)と、英語とスペイン語で性差別の識別と分類のためのアンサンブル戦略を使用する。
論文 参考訳(メタデータ) (2023-07-07T04:49:26Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Solving Quantitative Reasoning Problems with Language Models [53.53969870599973]
我々は、一般的な自然言語データに基づいて事前訓練された大規模言語モデルであるMinervaを紹介し、さらに技術的な内容について訓練する。
このモデルは、外部ツールを使わずに、技術的ベンチマークで最先端のパフォーマンスを達成する。
我々はまた、物理学、生物学、化学、経済学、その他の科学における200以上の学部レベルの問題に対して、我々のモデルを評価した。
論文 参考訳(メタデータ) (2022-06-29T18:54:49Z) - UPB at SemEval-2022 Task 5: Enhancing UNITER with Image Sentiment and
Graph Convolutional Networks for Multimedia Automatic Misogyny Identification [0.3437656066916039]
本稿ではSemEval-2022 Task 5: MAMI - Multimedia Automatic Misogyny Identificationについて述べる。
私たちのベストモデルは、サブタスクAで71.4%、サブタスクBで67.3%のF1スコアに達し、トップボードの上位3分の1にチームを配置します。
論文 参考訳(メタデータ) (2022-05-29T21:12:36Z) - TIB-VA at SemEval-2022 Task 5: A Multimodal Architecture for the
Detection and Classification of Misogynous Memes [9.66022279280394]
本稿では,テキストと視覚的特徴を組み合わせたマルチモーダルアーキテクチャを提案する。
課題は、ある文書が偽造であるかどうかを分類することである。
論文 参考訳(メタデータ) (2022-04-13T11:03:21Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language [0.0]
今回我々は,アラビア語のミソジニーのための最初のベンチマークデータセットである,ミソジニズム言語(let-mi)のためのアラビア語レバンティンtwitterデータセットを紹介する。
Let-Miは、いくつかの最先端の機械学習システムによるバイナリ/マルチ/ターゲット分類タスクによる評価データセットとして使用されました。
論文 参考訳(メタデータ) (2021-03-18T12:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。