論文の概要: A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features
- arxiv url: http://arxiv.org/abs/2206.08473v1
- Date: Thu, 16 Jun 2022 22:46:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-21 06:39:34.199947
- Title: A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features
- Title(参考訳): 多面ノード機能を持つディープグラフモデルのトレーニングのためのロバストスタックフレームワーク
- Authors: Jiuhai Chen, Jonas Mueller, Vassilis N. Ioannidis, Tom Goldstein,
David Wipf
- Abstract要約: 数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
- 参考スコア(独自算出の注目度): 61.92791503017341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) with numerical node features and graph structure
as inputs have demonstrated superior performance on various supervised learning
tasks with graph data. However the numerical node features utilized by GNNs are
commonly extracted from raw data which is of text or tabular
(numeric/categorical) type in most real-world applications. The best models for
such data types in most standard supervised learning settings with IID
(non-graph) data are not simple neural network layers and thus are not easily
incorporated into a GNN. Here we propose a robust stacking framework that fuses
graph-aware propagation with arbitrary models intended for IID data, which are
ensembled and stacked in multiple layers. Our layer-wise framework leverages
bagging and stacking strategies to enjoy strong generalization, in a manner
which effectively mitigates label leakage and overfitting. Across a variety of
graph datasets with tabular/text node features, our method achieves comparable
or superior performance relative to both tabular/text and graph neural network
models, as well as existing state-of-the-art hybrid strategies that combine the
two.
- Abstract(参考訳): 数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
しかし、gnnが利用する数値ノードの特徴は、実世界のほとんどのアプリケーションでテキストまたは表型(数値/カテゴリ)の生データから一般的に抽出される。
IID(non-graph)データを用いたほとんどの標準教師付き学習環境において、そのようなデータ型のための最良のモデルは、単純なニューラルネットワーク層ではないため、GNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝搬をIIDデータに意図した任意のモデルで融合し、複数の層にまとめて積み重ねるロバストな積み重ねフレームワークを提案する。
階層的なフレームワークは,バッグングとスタックングの戦略を利用して,ラベルの漏洩やオーバーフィッティングを効果的に軽減する,強力な一般化を享受する。
グラフ/テキストノード機能を備えたグラフデータセットの多種多様さに対して,本手法は,表/テキスト,グラフニューラルネットワークモデル,および2つの組み合わせた最先端ハイブリッド戦略に対して,同等あるいは優れた性能を実現する。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
我々は、同じクラスからのテキストエンコーディングがしばしば線形部分空間に集約されるという観察に乗じて、線形GNNモデルであるTrainlessGNNを紹介した。
実験の結果、私たちのトレインレスモデルは、従来の訓練済みのモデルにマッチするか、超えられることがわかった。
論文 参考訳(メタデータ) (2024-04-17T02:52:11Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。