論文の概要: Spectral Greedy Coresets for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.17404v1
- Date: Mon, 27 May 2024 17:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:04:26.439296
- Title: Spectral Greedy Coresets for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのスペクトルグリーディコアセット
- Authors: Mucong Ding, Yinhan He, Jundong Li, Furong Huang,
- Abstract要約: ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
- 参考スコア(独自算出の注目度): 61.24300262316091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ubiquity of large-scale graphs in node-classification tasks significantly hinders the real-world applications of Graph Neural Networks (GNNs). Node sampling, graph coarsening, and dataset condensation are effective strategies for enhancing data efficiency. However, owing to the interdependence of graph nodes, coreset selection, which selects subsets of the data examples, has not been successfully applied to speed up GNN training on large graphs, warranting special treatment. This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs (i.e., neighborhood subgraphs around a node) based on their spectral embeddings. We decompose the coreset selection problem for GNNs into two phases: a coarse selection of widely spread ego graphs and a refined selection to diversify their topologies. We design a greedy algorithm that approximately optimizes both objectives. Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs. Extensive experiments on ten datasets demonstrate that SGGC outperforms other coreset methods by a wide margin, generalizes well across GNN architectures, and is much faster than graph condensation.
- Abstract(参考訳): ノード分類タスクにおける大規模グラフの普及は、グラフニューラルネットワーク(GNN)の現実的な応用を著しく妨げている。
ノードサンプリング、グラフ粗大化、データセット凝縮は、データの効率を高める効果的な戦略である。
しかし、グラフノードの相互依存のため、データ例のサブセットを選択するコアセット選択は、大きなグラフ上でのGNNトレーニングの高速化に成功せず、特別な処理が保証されている。
本稿では,GNNのグラフコアセットについて検討し,そのスペクトル埋め込みに基づいてegoグラフ(すなわちノード周辺部分グラフ)を選択することにより,相互依存の問題を回避する。
我々は,GNNのコアセット選択問題を,広範に広がるエゴグラフの粗い選択と,それらのトポロジを多様化するための洗練された選択の2つの相に分解する。
我々は、両方の目的をほぼ最適化する欲求的アルゴリズムを設計する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
10個のデータセットに対する大規模な実験により、SGGCは他のコアセット法よりも広いマージンで優れ、GNNアーキテクチャ全体にわたってよく一般化され、グラフの凝縮よりもはるかに高速であることが示された。
関連論文リスト
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators [0.6816499294108261]
本研究では,グラフ不変量の分布に関するカーネルベースのメトリクスと,グラフ埋め込み空間における多様体ベースのメトリクスとカーネルベースのメトリクスについて検討する。
グラフの2つのよく知られた生成モデルであるGraphRNNとGRANを比較し、ノード順序の影響を明らかにする。
論文 参考訳(メタデータ) (2023-07-13T12:07:39Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
グラフニューラルネットワーク(GNN)は、グラフによってモデル化された不規則構造上の信号の処理を含む様々なアプリケーションで効果的に使用されている。
本稿では,グラフのスペクトル特性を保存したグラフオンを用いて,GNNのプールとサンプリングを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-03T21:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。